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Summary
The otx2 gene encodes a transcription factor (OTX2)

essential in the formation of the brain and sensory systems.

Specifically, OTX2-positive cells are associated with axons

in the olfactory system of mice and otx2 is upregulated in

odour-exposed zebrafish, indicating a possible role in

olfactory imprinting. In this study, otx2 was used as a

candidate gene to investigate the molecular mechanisms of

olfactory imprinting to settlement cues in the coral reef

anemonefish, Amphiprion percula. The A. percula otx2 (Ap-

otx2) gene was elucidated, validated, and its expression

tested in settlement-stage A. percula by exposing them to

behaviourally relevant olfactory settlement cues in the first

24 hours post-hatching, or daily throughout the larval phase.

In-situ hybridisation revealed expression of Ap-otx2

throughout the olfactory epithelium with increased

transcript staining in odour-exposed settlement-stage larval

fish compared to no-odour controls, in all scenarios. This

suggests that Ap-otx2 may be involved in olfactory

imprinting to behaviourally relevant settlement odours in

A. percula.
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Introduction
The orthodenticle homeobox 2 (otx2) gene encodes a DNA-
binding transcription factor (OTX2) involved in rostral head

development, including the development of the olfactory,

auditory and visual systems in a wide range of animals
(Simeone et al., 1993; Matsuo et al., 1995; Kablar et al., 1996;

Ueki et al., 1998). While first described in Drosophila (otd;

Finkelstein et al., 1990; Wieschaus et al., 1992), orthologues
were soon after described in mammals (murine otx1 and otx2;

Simeone et al., 1992). With a well-conserved homeodomain, otx

orthologues are now known in a wide range of metazoans, from

diploblastic cnidarians (Müller et al., 1999; Smith et al., 1999), to

deuterostomes, such as echinoderms (Gan et al., 1995), ascidians
(Wada et al., 1996), and a variety of vertebrates. Otx gene

duplications are purported to have occurred in a gnathostome

ancestor, and, subsequently, each paralogue has functionally
diversified (Germot et al., 2001; Suda et al., 2009). While the

paralogues otx1 and otx2 share a similar and synergistic function

in patterning of the developing head (Suda et al., 1996), otx5 and
its mammalian orthologue, cone rod homeobox (crx; Plouhinec et

al., 2003), are involved in the differentiation of retinal
photoreceptors and circadian entrainment to daily light–dark

cycles (Furukawa et al., 1999; Gamse et al., 2002).

In mice, the deformation or complete lack of olfactory

epithelium in embryos with an inactivated copy of otx2

(otx2+/2; Matsuo et al., 1995), combined with the early

presence of OTX2 in the embryonic olfactory placode

(Mallamaci et al., 1996), suggests that OTX2 plays an integral

role in the olfactory system. In addition, cells expressing OTX2

are physically associated with olfactory axons and ensheath axon

bundles arising from the olfactory epithelium and vomero-nasal

organ and heading towards the telencephalon (Mallamaci et al.,

1996). In adult zebrafish, exposure to an artificial odour, PEA

(phenyl-ethyl-alcohol), during the first three weeks of life caused

otx2 (among other genes) to be upregulated 3.26 fold in the

olfactory epithelium when compared to unexposed control fish

(Harden et al., 2006). The odour-exposed fish had significantly

more cells expressing otx2 in the olfactory epithelium than

control fish, starting from as early as 24 hours post fertilisation
and then throughout development into adulthood. In contrast,

cells expressing otx2 in the midbrain were similar in both

treatment and control fish, indicating the expression changes are

specific to the olfactory epithelium. Harden et al. posit that these

expressional changes play a role in olfactory memory due to

epigenetic processes in the olfactory epithelium (Harden et al.,

2006).
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In many coral reef fish, olfaction plays a critical role in

locating settlement habitat following a larval dispersal stage
(Atema et al., 2002; Lecchini et al., 2005; Gerlach et al., 2007;

Leis et al., 2011). For example, larvae of several different reef

fish species prefer water from their settlement reef when exposed

to waters from a variety of nearby reefs (Gerlach et al., 2007;
Dixson et al., 2008; Dixson et al., 2011; Miller-Sims et al., 2011).

This indicates that each reef has a distinct repertoire of odours

and that fish have the ability to detect these different odours.
Similarly, navigation to reefs and locations of appropriate

settlement habitat appears to be mediated by olfactory cues in

the orange anemonefish, Amphiprion percula. Despite the

possibility of being carried away from their natal reef by
currents, over sixty percent of A. percula settle on their natal reef

after 10 to 13 days in the water column as larvae (Almany et al.,

2007). While exact mechanisms that enable A. percula larvae to
locate suitable settlement sites are unknown, Dixson et al.

suggest that an olfactory response to chemical cues of island

vegetation may play a role (Dixson et al., 2008). A. percula and

its host anemones, Heteractis magnifica and Stichodactyla

gigantea, are most abundant on coral reefs surrounding

vegetated islands rather than on emergent reefs, and

anemonefish larvae exhibit a strong behavioural preference for
seawater containing olfactory cues from rainforest tree leaves

(Dixson et al., 2008). Therefore, chemical cues released by island

vegetation might assist larvae to navigate to reefs where suitable

settlement habitat can be found.

Anemonefish recruits also respond to olfactory cues released

from anemones, enabling them to locate a suitable host for
settlement once they have navigated to reef habitat at the end of

their pelagic larval stage (Arvedlund and Nielsen, 1996).

Arvedlund et al. demonstrated that the specialist, Amphiprion

melanopus, not only has an innate preference for its host

anemone but that this preference is augmented by an imprinting

mechanism (Arvedlund et al., 1999). As anemonefish spawn on

substrate close to their host anemones, imprinting likely occurs
when the anemone mucous comes into close contact with the

eggs (Arvedlund et al., 2000a). As olfaction appears to be an

important homing and habitat selection mechanism in
anemonefish, these species provide a useful model group for

testing the genetic mechanisms of olfactory memory formation in

reef fishes (Hino et al., 2009).

As otx2 is upregulated in odour-exposed zebrafish compared to

controls, it is an ideal candidate gene to investigate olfactory

imprinting in anemonefish. The aims of this study, therefore,
were to: (1) elucidate the sequence of the otx2 gene in the

anemonefish, A. percula (Ap-otx2); (2) compare Ap-OTX2 to

other OTX sequences to validate its identity and discriminate
between it and other possible OTX paralogues; (3) determine if

Ap-otx2 is expressed in the olfactory area of A. percula; (4) test if

there is variation in Ap-otx2 transcript abundance in settlement

cue exposed fish compared to controls; and (5) assess the utility
of this gene for the future detection of olfactory imprinting in

anemonefish.

Materials and Methods
Isolation of Ap-otx2
The Danio rerio otx2 gene (Dr-otx2), EST accession number U14592, was used to
design primers for amplification of a portion of the Ap-otx2 gene corresponding to
Dr-otx2 exon four. Dr-otx2 is located on chromosome 17 and has four exons (E1–
E4; Ensembl database). Each Danio rerio exon was aligned using BioEdit
Sequence Alignment Editor Software (Hall, 2007) to otx2 sequences from five

species of cichlid and Takifugu rubripes available from the GenBank Public
Database (Altschul et al., 1997; accession numbers AB084643, DQ264396,
AB084641, AB084641, AB084644, AY303542, NM_131251 respectively). Using
conserved regions from these sequences, a pair of primers was designed for use in
the Polymerase Chain Reaction (PCR) to amplify a 374 base pair (b.p.) region in
the coding region of E4 (Table 1; Ap-otx2-E4 F and R). E1 and E2 were not
selected for primer design as there is a high degree of sequence variability among
species due to the untranslated region and the E3 sequence has high similarity to
other otx paralogues, otx1 and otx5.

Fin clips were collected from four juvenile A. percula housed in 70-litre tanks in
a 70,000-litre recirculating seawater system at the James Cook University’s Marine
Aquarium Facility. Total genomic DNA (gDNA) was extracted using a Chelex
extraction protocol (Walsh et al., 1991). The Ap-otx2-E4 primers were used in a
20 mL PCR according to conditions listed in Table 1, using Qiagen reagents.
Samples were amplified in a Peltier Thermal Cycler (Bio-Rad) with the following
steps: pre-denaturation at 96 C̊ for 2 min; 35 cycles of denaturation for 30 sec at
96 C̊, annealing at 55 C̊ for 30 sec and extension at 72 C̊ for 30 sec; followed by a
10 min final extension. PCR products were checked by separating on a 1.5%
agarose gel, purified using the QIAquick PCR Purification Kit (Qiagen) and sent to
the Australian Genome Research Facility (AGRF) for sequencing.

Total RNA was isolated from a control larval A. percula collected from a 70-
litre tank in a closed seawater system at the James Cook University Marine
Aquarium Facility using methods described by de Santis et al. (De Santis et al.,
2011). Full-length 59 and 39 ends were obtained using the GeneRacerTM RACE Kit
(Invitrogen) and gene specific primers designed from the partial putative E4
sequence (Table 1; Ap-59end R and Ap-39end F). Amplification was carried out
according to GeneRacerTM instructions, including a second ‘‘nested’’ amplification
using 1 mL of the first PCR product, GeneRacerTM nested primers and custom
designed nested primers, (Table 1; Ap5nest and Ap3nest). PCR products were then
cloned into the pGEM-T Easy Vector system (Promega) and sequenced by AGRF.
Sequencing results were verified by aligning each fragment in Geneious Pro 5.0.3
(A. J. Drummond et al., Geneious v5.1, 2010, available from http://www.geneious.
com) at their 59 and 39 ends to the sequences of their respective GeneRacerTM

oligomers and the 374 b.p. putative E4 fragment.
Primers were designed to amplify intron sequences and PCR amplification of

each intron was performed using gDNA and Bioline reagents (Table 1). Samples
were amplified in C1000 Thermal Cyclers (Bio-Rad) using amplification programs
with the following steps: pre-denaturation at 94 C̊ for 2 min; 35 cycles of
denaturation at 94 C̊ for 30 sec, annealing at temperatures listed in Table 1 for
30 sec, and extension at 72 C̊ at times listed in Table 1; and, finally, a 10 min
extension at 72 C̊.

Five bands from the Intron 1 amplification were gel extracted using the
QIAquick Gel Extraction Kit (Qiagen) and re-amplified. PCR products from each
intron were purified using the QIAquick PCR purification kit (Qiagen) and sent to
AGRF for sequencing. Sequences obtained were verified by alignment to the
flanking exon sequences, in which the primers were designed.

Sequence and phylogenetic analysis
Nucleotide sequences for the various exons of the Ap-otx2 were compiled using
Geneious Pro 5.0.3 (A. J. Drummond et al., Geneious v5.1, 2010, available from
http://www.geneious.com). The coding sequence was translated into amino acids
(AAs) using Geneious Pro 5.0.3 (A. J. Drummond et al.) and aligned to forty-six
AA sequences from the National Centre for Biotechnology Information (NCBI)
using the MUSCLE algorithm (Biomatters) with default settings in Geneious Pro
5.0.3 (A. J. Drummond et al.). Sequences from NCBI that were only partial or
extended well beyond the 260 AA Ap-OTX2 sequence at either the N- or C-
terminus were excluded. ProtTest was used to determine the best protein model
(Abascal et al., 2005) and MEGA version 5 (Tamura et al., 2011) was used to
evaluate evolutionary relationships by generating maximum likelihood (ML),
maximum parsimony (MP) and neighbour joining (NJ) trees, with no outgroup.
MP and NJ were analysed with 1000 bootstrap replicates. Fifty percent majority
rule consensus support values from all bootstrap replicate analyses were presented
on the consensus ML 100 bootstrap replicate tree.

Anemonefish odour treatments
A. percula larvae were exposed to behaviourally relevant settlement odours to
examine patterns of Ap-otx2 expression in the olfactory organ. Larval A. percula
were obtained from adult breeding pairs maintained at James Cook University’s
Marine and Aquaculture Research Facility Unit, and were reared using standard
methods described by Dixson et al. (Dixson et al., 2008). Groups of newly hatched
larvae were split equally into three 70-litre rearing tubs containing artificial
seawater (Red Sea Brand). To test effects of a known olfactory settlement cue, 10
grams of leaves from a common coastal rainforest tree, Xanthostemon chrysanthus:
Myrtaceae, were added to one of the rearing tubs in a nylon bag and either (1)
changed daily or (2) added only for the first 24 hours post-hatching. In the second
rearing tub, 10 grams of leaves from the swamp tree, Melaleuca nervosa, were
added daily as the pungent oils released by the leaves are known to elicit an
avoidance response by settling anemonefish (Munday et al., 2009). Tree leaf odour
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was evaluated and not anemone odour or artificial PEA as the Xanthostemon and
Melaleuca leaf cues have been shown to elicit strong positive and repulsive
behavioural responses, respectively, in both wild and lab-reared settlement-stage
larvae (Munday et al., 2009). Recent experiments demonstrate that positive and
negative behavioural imprinting can occur when larvae are exposed to tropical
plant odours early in their larval stage (D.L.D., G.P. Jones, P.L.M., M.S. Pratchett,
S. Planes and S.R. Thorrold, unpublished data). Therefore, exposing the larvae to
leaf cues provides a more powerful test for gene expression than would be possible
if using anemone cues alone, which are generally favoured by anemonefish (Elliott
et al., 1995; Arvedlund et al., 1999). While we cannot exclude a role for gustation
or other chemosenses, the Xanthostemon and Melaleuca leaf cues are involved in
navigation and habitat selection (Munday et al., 2009) and are thus most likely
detected by the larval fishes well developed olfactory system. The final rearing tub
contained no added settlement-specific olfactory cues in order for the anemonefish
to serve as controls. Newly hatched larvae and 11 day post-hatching larvae (the
approximate age at which A. percula settle; Almany et al., 2007) from control and
odour-treatment tanks were snap frozen in liquid nitrogen and stored at 280 C̊
until processing.

In-situ hybridisation
In-situ hybridisation was used to test if Ap-otx2 is expressed in the olfactory area of
larval A. percula. A 761 b.p. Ap-otx2 probe for in-situ hybridisation was designed
from the above mentioned Ap-otx2 sequence. A. percula cDNA was PCR
amplified with forward (59-UCUUUUACAUCCGUCAGUGGGC-39) and reverse
(59-CCAAGCAAUCGGCAUUGAAGTT-39) primers designed using Primer3
(Rozen and Skaletsky, 2000) and cloned into the pCR 4-TOPO vector
(Invitrogen). Digoxigenin-labelled sense and antisense mRNA probes were
transcribed using T3 and T7 RNA polymerases, respectively, according to
manufacturer instructions (Roche).

Snap-frozen newly hatched and 11-day-old larvae were thawed at 4 C̊ overnight
in 4% paraformaldehyde phosphate-buffered saline. The head was dissected from
the body and the eyes were removed. Whole-mount in-situ hybridisation was then
performed on the dissected, eyeless head as described by Ghosh et al. (Ghosh et al.,
2009). Whole mounts were stained with NBT/BCIP (Roche) at 4 C̊ and imaged in
PBS using a Leica M165FC stereo dissection microscope. All control and odour
treated larvae were processed together in the same solutions for the same amount
of time and were compared side-by-side. Significant differences in Ap-otx2

transcript abundance was determined by comparing olfactory area optical density
from each treatment using Image J (NIH) and ANOVA for each replicate image.
Fisher’s LSD post hoc tests were performed as necessary. All statistics were
completed with Statistica 8.0 (StatSoft).

Results
Ap-otx2 sequence
Based on the Dr-otx2 sequence, a 374 b.p. region on the putative

fourth exon was targeted in A. percula as a starting point to
determine the full Ap-otx2 sequence. All four individuals
analysed produced identical 374 b.p. sequences. The

GeneRacer kit was then used to generate two fragments of
764 b.p. and 1171 b.p. representing the 59 and 39 ends,
respectively. The two fragments were aligned to Dr-otx2 exons
to determine exon–intron boundaries and the putative four exons

are 258 b.p., 231 b.p., 154 b.p. and 1585 b.p. in length,
respectively. The nucleotide sequence has a predicted start
codon (ATG) at base 134 in E2 and a putative stop codon (TGA)

at base 620 in E4 (Fig. 1). Based on this open reading frame, E1
is fully non-coding and E2 has both non-coding (134 b.p.) and
coding (97 b.p.) regions, similar to E4 (622 b.p. and 963 b.p.,

respectively). Overall, the putative coding region is 873 b.p. long
and translates to 291 AAs, similar to T. rubripes OTX2 (Tr-
OTX2) but one AA longer than Dr-OTX2 (Fig. 2).

The putative Ap-OTX2 AA sequence (GenBank accession
number JN831750) shows a number of shared motifs with OTX2
AA sequences from other species, including those from the

paralogues, OTX1, OTX5, OTX and CRX. The homeodomain, a
60 AA region that binds to DNA (Kelley et al., 2000), is highly
conserved and is identical in sequence when compared to Dr-

OTX2, a number of cichlids (Tropheus duboisi, Astatoreochromis

alluaudi, Haplochromis brownae), several other species of fish
(T. rubripes, Oryzias latipes, Oryzias melastigma, Carassius
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auratus), two species of frog (Xenopus (Silurana) tropicalis,

Eleutherodactylus coqui), chicken (Gallus gallus), and a variety

of mammals (Mus musculus, Macaca mulatta, Rattus norvegicus,

Homo sapiens). Interestingly, it is also identical to the OTX

homeodomain of the sea squirt, Herdmania curvata. Of

thirty-two other OTX homeodomain sequences, Ap-OTX2

homeodomain had sequence identities ranging from 72–98%.

Eight OTX1 homeodomain sequences matched from 90–98%,

Fig. 1. Schematic of the otx2 gene in Amphiprion percula. Each rectangle represents an exon (E1–E4) and each solid line represents an intron. The dashed

line represents intron 1 and is depicted as the same size as intron 1 in otx2 of Danio rerio. Grey rectangles correspond to untranslated regions within the exons, while
white rectangles correspond to coding regions. Gray dotted arrows indicate the location where the first primers annealed for the initial amplification of the 374
base pair (b.p.) region. The black dotted arrows pointing upwards are the primer annealing points when using the GeneRacer (Invitrogen) kit to amplify the 59 and 39

ends and the arrows pointing downwards are where the primers annealed to amplify each intron. Horizontal dotted lines represent amplicon lengths. Scale indicates
distance for 100 b.p. Note that nested primers indicated in Table 1 are not included in this figure.

Fig. 2. Amino acid sequence alignments for OTX2 from anemonefish, Amphiprion percula (Ap-OTX2); pufferfish, Takifugu rubripes (Tr-OTX2); and zebrafish,

Danio rerio (Dr-OTX2). Annotations for Tr-OTX2 and Dr-OTX2 obtained from the GenBank Public Database are indicated below the sequence: the homeodomain
(medium-grey rectangle; residues 38 to 97), DNA binding residues (black squares; residues 39–43, 45, 62, 68, 81, 83–84, 87–88, 90–92 and 94) and specific DNA base
contact residues (dark-grey squares; residues 41, 44, 84, 88–89 and 91). Disagreements in amino acids from each sequence are highlighted in light-grey.
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ten OTX5 from 95–98%, ten CRX from 87–98% and the other

five OTX2 sequences matched from 88–98%. When comparing

to annotations from other OTX2 sequences obtained through

NCBI (supplementary material Table S1), the Ap-OTX2 home-

odomain shares the seventeen AAs responsible for DNA binding

and the six that are specific DNA base contacts (Fig. 2).

While introns 2 and 3 produced sequences of 565 and 658 b.p.,

respectively (Fig. 1), it was not possible to acquire the sequence

for intron 1 in this study, despite multiple PCR optimisations and

sequencing of the generated PCR products. When a BlastN

search was performed on intron 2 and 3, there were no matches to

other otx sequences. Similarly, the untranslated E1 does not align

to any other otx sequence. The 133 b.p. untranslated portion of

E2, however, has a single match, with an 85% sequence identity

to otx2 from the pufferfish, T. rubripes (Tr-otx2). In contrast, the

963 b.p. untranslated region of E4 has a region of approximately

155 b.p. that aligns to otx2 sequences from G. gallus (88%; Gg-

otx2), Cynops pyrrhogaster (85%; Cp-otx2), M. mulatta (85%;

Ma-otx2), H. sapiens (85%; Hs-otx2), X. (Silurana) tropicalis

(83%; Xst-otx2), X. laevis (82%; Xl-otx2) and R. norvegicus

(81%; Rn-otx2). Tr-otx2 aligns to a much greater portion of the

untranslated E4 (72%), with two major sections aligning at 71%

and 82% identity, with the 155 b.p. included in the latter section.

Dr-otx2 also aligns to the Ap-otx2 155 b.p. region with an

additional 70 bases at the 39 end with an 88% match.

Phylogenetic analyses

From the alignment of 684 AA positions, 287 were parsimony

informative, 458 were variable and 143 were singletons.

Phylogenetic analyses of aligned AA sequences indicate the

separation into five classes: OTX2 (n514), OTX5 (n56), CRX

(n56), OTX1 (n55) and OTX (n516) (Fig. 3). However, of the

forty-seven sequences, OTX from the Sea Lamprey, Petromyzon

marinus (Pm-OTX), and the two isoforms of the Arctic Lamprey,

Lethenteron japonicum (Lj-OTXa and Lj-OTXb) do not fall

within the OTX class. The analyses also indicate that the deeper

nodes have either very little or no support whereas the majority of

the shallow nodes are well resolved with mostly strong statistical

support.

The sequence obtained in this study is most closely related to

other OTX2 sequences, and this clade has the strongest support as

a distinct lineage at $95%. Therefore, the strong support in this

Fig. 3. Maximum likelihood (ML) tree of forty-seven OTX amino acid sequences. Values on inter nodes indicate bootstrap support values obtained from
100 ML, 1000 NJ and 1000 MP bootstrap replicates. A lack of support is indicated by ( __ ). The different colours correspond to the different OTX paralogues:
OTX 5 green, OTX1 5 purple, OTX5 5 dark blue, CRX 5 light blue and OTX2 5 red. These colours also correspond to the vertical rectangles, which serve to

further differentiate the paralogues. The asterisked and bolded selection identifies the species from this study: the anemonefish, Amphiprion percula.
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phylogenetic analysis has confirmed that the sequence amplified

and characterised in this study is Ap-OTX2 and not one of the

other OTX paralogues. Ap-OTX2 is most similar in these

analyses to Tr-OTX2 with $77% support. In OTX2 and OTX1

lineages, it is clear that fishes are grouped together, followed by

frogs and then birds and mammals. The OTX2 sequence for the

Japanese Fire Belly Newt, Cp-OTX2, is a sister sequence to the

other OTX2 sequences. OTX5 shows a similar arrangement to

OTX1 and OTX2, with fish leading to frog and bird; however, no

mammal sequences are represented. The OTX class is

represented by invertebrate, urochordate and cephalocordate

animals, with the exception of the vertebrate Lamprey’s (Pm-

OTX, Lj-OTXa and Lj-OTXb) which are not found within this

group.

In-situ hybridisation

Both newly hatched and settlement-stage larvae exhibited

positive staining for mRNA transcripts of Ap-otx2 in the

olfactory area (Fig. 4). In newly hatched larvae, Ap-otx2

mRNA transcripts were present throughout the olfactory

placode (Fig. 4A). The olfactory placode of A. percula was in

the same shape and location to that of Amphiprion melanopus at a

similar developmental stage (Arvedlund et al., 2000b). In

settlement-stage larvae, the Ap-otx2 mRNA transcript was

detected throughout the olfactory area, giving a distinct cup

shape with defined edges (Fig. 4B). Settlement-stage fish had

developed an inlet (anterior) and outlet (posterior) nostril on

either side of the head, between the mouth and eye (Fig. 4B). The

antisense probe performed in parallel with the control sense

probe demonstrated the presence of specific hybridisation in the

olfactory area (supplementary material Fig. S1).

The effect of daily exposure to known behavioural settlement

cues (attractive and repulsive) on Ap-otx2 expression in 11-day-

old larvae was also evaluated. To better visualise the detection of

Ap-otx2 mRNA transcripts in the olfactory chambers, the ventral

portion of the head was removed (Fig. 5A). Evaluation of optical

density showed significantly lower levels of Ap-otx2 transcript

staining in the control settlement-stage larvae compared to both

the attractive (Xanthostemon) and repulsive (Melaleuca) leaf

odour-exposed A. percula for each replicate image (Fig. 5B;

n54; replicates not shown). There was, however, no significant

difference in Ap-otx2 transcript staining between the two

settlement-odour treatments.

To evaluate whether Ap-otx2 plays a potential role in

settlement odour memory or imprinting, expression was

evaluated in larvae that were exposed only on the first day

post-hatching to Xanthostemon leaves, and not daily. At

settlement, odour exposed larvae showed a significant increase

in Ap-otx2 transcript abundance in the olfactory area compared to

no-settlement-odour controls, even when only exposed for the

first day post-hatching (Fig. 6; n53; repeats not shown).

Discussion
This study elucidated and validated the otx2 gene in the

anemonefish, A. percula (Ap-otx2). Ap-otx2 is expressed

throughout the olfactory placode of newly hatched A. percula

and within the olfactory area of settlement-stage larvae. Larvae

exposed daily to either positive or negative settlement cues,

Xanthostemon and Melaleuca leaves, respectively, qualitatively

show greater Ap-otx2 transcript staining compared to control

larvae that experienced no added settlement cues. In addition,

larvae only exposed to Xanthostemon on the first day after

hatching also showed this elevated transcript abundance

compared to control larvae. This suggests that Ap-otx2 is likely

involved in settlement-odour detection and imprinting in A.

percula and may be suitable for further studies as a marker for

olfactory imprinting in anemonefish.

Ap-OTX2 and its relationship to other OTX sequences

Due to the phylogenetic relationship of the Ap-OTX2 AA

sequence with other OTX2 proteins rather than with any of the

OTX paralogues, the sequence obtained for A. percula in this

study can confidently be confirmed as OTX2. Other studies that

performed similar OTX phylogenetic analyses (e.g. Germot et al.,

2001; Plouhinec et al., 2003; Suda et al., 2009) produced

comparable results to those obtained here, albeit with fewer taxa

represented. Germot et al. performed phylogenetic analyses on 29

OTX sequences from the various classes, using 148 positions

Fig. 4. Ap-otx2 in-situ hybridisation of the olfactory area in Amphiprion percula. Dark purple areas represent Ap-otx2 mRNA transcript expression in the
olfactory placode of a newly hatched larva (A) and the olfactory epithelium of settlement-stage larva exposed to Xanthostemon leaves (B). Circular inlet (i) and outlet
(o) nostrils are indicated (B). Dark brown patches are pigment cells. Scale bars: 50 mm.
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(101 of which are parsimony informative) of aligned OTX AA

sequences (Germot et al., 2001). Our study included an additional

18 OTX sequences (47 total), 536 additional AA positions (684

total) and more than twice as many parsimony informative sites

(287) and generated similar phylogenetic results. The lack of

support at the deeper nodes and strong support at shallow nodes,

the grouping into the different OTX classes, and the more

diverged CRX sequences from the OTX5 class (indicating

orthologous genes) are consistent among this study and

previous OTX phylogenetic studies (Germot et al., 2001;

Plouhinec et al., 2003; Suda et al., 2009), extending the

validity of previous work.

The present study included alignments of the OTX class from a

number of invertebrates, urochordates and cephalocordates,

which were not included in earlier studies, though Suda et al.

included the amphioxus Branchiostoma floridae (Suda et al.,

2009) and Plouhinec et al. included four ascidian sequences

(Plouhinec et al., 2003). Plouhinec et al. noted that the ascidian

OTX sequences are a monophyletic group (Plouhinec et al.,

2003) and, while Germot et al., Suda et al. and this study did not

use an outgroup (Germot et al., 2001; Suda et al., 2009),

Plouhinec et al. used these ascidian OTX sequences as outgroups

Fig. 5. Effect of daily settlement cue odour on Ap-otx2 expression in the olfactory area after in-situ hybridisation. (A) Diagram indicating approximate location
of tissue dissected from the dorsal section of larval heads (hashed lines). (B) Ventral view of three settlement-stage Amphiprion percula heads for control (c),
Melaleuca-(m) and Xanthostemon-(x) leaf odour exposed larvae, dissected along the anterior–posterior axis with the anterior-most region (upper jaw) located at the
top of the figure. Ap-otx2 transcripts are restricted to the olfactory area (arrows) and all other black patches represent pigment cells. Scale bar: 170 mm.

Fig. 6. Effect on 11-day old Amphiprion percula Ap-otx2 transcript

abundance after settlement odour exposure for 1-day post-hatching. Lateral
view after in-situ hybridisation of eyeless heads for control (C) and
Xanthostemon-(X) leaf odour exposed larvae. Note that control fish were not
exposed to settlement cues at any stage. Ap-otx2 transcripts are located in the

olfactory area with dorso- and ventral-boundaries denoted by arrows and
showing greater staining in the Xanthostemon-treated fish. Black/brown patches
represent pigment cells. Circular inlet (i) and outlet (o) nostrils are indicated.
Scale bar: 340 mm.
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(Plouhinec et al., 2003). With the addition of other invertebrate
(echinoderms, acorn worms and a polychaete) and ascidian

sequences in the present analysis, the non-vertebrate OTX
sequences were identified as more closely related to each other
and separated from all other OTX paralogues and OTX
vertebrates, though only with a maximum support value of

51%. The only OTX sequences analysed in Germot et al. were
from hagfish and lamprey vertebrates (Germot et al., 2001) and,
due to lack of support, can be seen as more closely related to each

other than the other paralogues. Similarly, in the studies by Suda
et al. and Plouhinec et al., the hagfish and lamprey OTX
sequences appear in various locations throughout their

phylogenetic trees with either little or no support for their
placement (Suda et al., 2009; Plouhinec et al., 2003). The results
from this study suggest that the vertebrate OTX-class sequences,
Pm-OTX, Lj-OTXa and Lj-OTXb, may be monophyletic with the

other OTX1, OTX5/CRX and OTX2 classes, and it has been
suggested that these three OTX classes were fixed before the
gnathostome radiation and after the cyclostomes divergence

(Germot et al., 2001; Plouhinec et al., 2003). The addition of
more vertebrate OTX-class sequences in future analyses may
help elucidate their relationship to the other OTX paralogues.

Odour-treatment expression analysis

To consider Ap-otx2 as a candidate gene for testing olfactory
imprinting in A. percula, it is first necessary to: (1) verify that the

gene is associated with the olfactory area, (2) determine if there is
differential expression in settlement-cue exposed versus
unexposed larvae and (3) detect continued increased expression

after initial exposure, even without the daily presence of the
odour. The presence of Ap-otx2 transcripts in the olfactory organs
of A. percula was confirmed in both newly hatched and

settlement-stage larvae. Contrary to the limited and localised
(ventral–anterior) expression of Dr-otx2 in adult and 24- and 72-
hours post-fertilisation zebrafish (Harden et al., 2006), Ap-otx2

was expressed throughout the olfactory area and, qualitatively,
within a far greater number of cells. Furthermore, positive
(Xanthostemon) and repulsive (Melaleuca) leaf odour settlement
cues added daily to larval tanks caused an upregulation of Ap-

otx2 in the olfactory area of settlement-stage A. percula,
compared to settlement-stage control larvae lacking this
olfactory stimulus. Therefore, Ap-otx2 is responsive to not only

attractive odours for settlement, but also repulsive ones and may
be involved in a general settlement-odour imprinting response.
Both unexposed control and settlement-stage odour-exposed fish

would have experienced other odours in the tanks, such as those
produced by conspecifics and food. Combined with the fact that
the leaf odours used are known to be behaviourally relevant

settlement cues, and that control larvae did not exhibit increased
Ap-otx2 expression despite being exposed to other non-settlement
odours in the tanks, the results of this study indicate the continued
upregulation of Ap-otx2 compared to controls is likely the direct

result of settlement-specific odours.

As wild A. percula are not likely to be exposed daily to
settlement odours during their pelagic larval phase, the more

ecologically relevant test of odour exposure for only the first 24-h
post-hatching demonstrated that the larvae not only continue to
respond behaviourally to the odour (Dixson et al., 2011) but that

Ap-otx2 remains upregulated compared to larvae never exposed
to settlement odours. Recent studies have demonstrated that
larval and juvenile reef fishes have distinct olfactory preferences

and that they are able to recognise and respond to chemical

odours from the reefs where they ultimately settle (Gerlach et al.,

2007; Dixson et al., 2008; Miller-Sims et al., 2011). Anemonefish

have a well-developed olfactory placode at hatching (Arvedlund

et al., 2000b), which would enable them to detect, and potentially

imprint on the odour of natal habitats. Furthermore, behavioural

imprinting to preferred habitats has been demonstrated in several

species of anemonefish (Arvedlund and Nielsen, 1996;

Arvedlund et al., 1999). Therefore, the results of this study

indicate that Ap-otx2 is almost certainly involved in the

recognition of olfactory settlement cues in A. percula and

likely plays a role in imprinting. OTX2 has been linked to

opening the critical period for neuron plasticity in the visual

cortex of mice (Rebsam and Mason, 2008) and similar processes

might be at play in the olfactory system of fishes. For example,

the early presence of PEA in juvenile zebrafish that results in an

upregulation of Dr-otx2 (Harden et al., 2006) might be the stage

at which olfactory plasticity is opened. From that point forward,

Dr-otx2 is always upregulated when compared to unexposed

controls and the zebrafish is likely imprinted to PEA. In this

study, the greater Ap-otx2 transcript abundance in settlement

stage larvae that were cue-exposed for only the first 24-hours

post-hatching may indicate that Ap-otx2 plays a similar role in

olfactory neuron plasticity in anemonefish. Future experiments

evaluating changes in expression of additional genes to

settlement odour cues may help elucidate the exact nature of

the role Ap-otx2 plays in olfactory imprinting.

Acknowledgements
This research received no specific grant from any funding agency in
the public, commercial or not-for-profit sectors.

Competing Interests
The authors have no competing interests to declare.

References
Abascal, F., Zardoya, R. and Posada, D. (2005). ProtTest: selection of best-fit models

of protein evolution. Bioinformatics 21, 2104-2105.

Almany, G. R., Berumen, M. L., Thorrold, S. R., Planes, S. and Jones, G. P. (2007).

Local replenishment of coral reef fish populations in a marine reserve. Science 316,

742-744.

Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J. H., Zhang, Z., Miller,

W. and Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of

protein database search programs. Nucleic Acids Res. 25, 3389-3402.

Arvedlund, M. and Nielsen, L. E. (1996). Do the anemonefish Amphiprion ocellaris

(Pisces: Pomacentridae) imprint themselves to their host sea anemone Heteractis

magnifica (Anthozoa: Actinidae)? Ethology 102, 197-211.

Arvedlund, M., McCormick, M. I., Fautin, D. G. and Bildsøe, M. (1999). Host

recognition and possible imprinting in the anemonefish Amphiprion melanopus

(Pisces: Pomacentridae). Mar. Ecol. Prog. Ser. 188, 207-218.

Arvedlund, M., Bundgaard, I. and Nielsen, L. E. (2000a). Host imprinting in

anemonefishes (Pisces: Pomacentridae): does it dictate spawning site preferences?

Environ. Biol. Fish 58, 203-213.

Arvedlund, M., Larsen, K. and Winsor, H. (2000b). The embryonic development of

the olfactory system in Amphiprion melanopus (Perciformes: Pomacentridae) related

to the host imprinting hypothesis. J. Mar. Biol. Assoc. UK 80, 1103-1109.

Atema, J., Kingsford, M. J. and Gerlach, G. (2002). Larval reef fish could use odour

for detection, retention and orientation to reefs. Mar. Ecol. Prog. Ser. 241, 151-160.

De Santis, C., Smith-Keune, C. and Jerry, D. R. (2011). Normalizing RT-qPCR data:

are we getting the right answers? An appraisal of normalization approaches and

internal reference genes from a case study in the finfish Lates calcarifer. Mar.

Biotechnol. (NY) 13, 170-180.

Dixson, D. L., Jones, G. P., Munday, P. L., Planes, S., Pratchett, M. S., Srinivasan,

M., Syms, C. and Thorrold, S. R. (2008). Coral reef fish smell leaves to find island

homes. Proc. Biol. Sci. 275, 2831-2839.

Dixson, D. L., Jones, G. P., Munday, P. L., Pratchett, M. S., Srinivasan, M., Planes,

S. and Thorrold, S. R. (2011). Terrestrial chemical cues help coral reef fish larvae

locate settlement habitat surrounding islands. Ecol. Evol. 1, 586-595.

Otx2 and imprinting in anemonefish 914

B
io

lo
g
y

O
p
e
n

http://dx.doi.org/10.1093/bioinformatics/bti263
http://dx.doi.org/10.1093/bioinformatics/bti263
http://dx.doi.org/10.1126/science.1140597
http://dx.doi.org/10.1126/science.1140597
http://dx.doi.org/10.1126/science.1140597
http://dx.doi.org/10.1093/nar/25.17.3389
http://dx.doi.org/10.1093/nar/25.17.3389
http://dx.doi.org/10.1093/nar/25.17.3389
http://dx.doi.org/10.1111/j.1439-0310.1996.tb01118.x
http://dx.doi.org/10.1111/j.1439-0310.1996.tb01118.x
http://dx.doi.org/10.1111/j.1439-0310.1996.tb01118.x
http://dx.doi.org/10.3354/meps188207
http://dx.doi.org/10.3354/meps188207
http://dx.doi.org/10.3354/meps188207
http://dx.doi.org/10.1023/A:1007652902857
http://dx.doi.org/10.1023/A:1007652902857
http://dx.doi.org/10.1023/A:1007652902857
http://dx.doi.org/10.1017/S0025315400003179
http://dx.doi.org/10.1017/S0025315400003179
http://dx.doi.org/10.1017/S0025315400003179
http://dx.doi.org/10.3354/meps241151
http://dx.doi.org/10.3354/meps241151
http://dx.doi.org/10.1007/s10126-010-9277-z
http://dx.doi.org/10.1007/s10126-010-9277-z
http://dx.doi.org/10.1007/s10126-010-9277-z
http://dx.doi.org/10.1007/s10126-010-9277-z
http://dx.doi.org/10.1098/rspb.2008.0876
http://dx.doi.org/10.1098/rspb.2008.0876
http://dx.doi.org/10.1098/rspb.2008.0876
http://dx.doi.org/10.1002/ece3.53
http://dx.doi.org/10.1002/ece3.53
http://dx.doi.org/10.1002/ece3.53


Elliott, J. K., Elliott, J. M. and Mariscal, R. N. (1995). Host selection, location and
association behaviors of anemonefishes in field settlement experiments. Mar. Biol.

122, 377-389.
Finkelstein, R., Smouse, D., Capaci, T. M., Spradling, A. C. and Perrimon,

N. (1990). The orthodenticle gene encodes a novel homeo domain protein involved in
the development of the Drosophila nervous system and ocellar visual structures.
Genes Dev. 4, 1516-1527.

Furukawa, T., Morrow, E. M., Li, T., Davis, F. C. and Cepko, C. L. (1999).
Retinopathy and attenuated circadian entrainment in Crx-deficient mice. Nat. Genet.

23, 466-470.
Gamse, J. T., Shen, Y. C., Thisse, C., Thisse, B., Raymond, P. A., Halpern, M. E.

and Liang, J. O. (2002). Otx5 regulates genes that show circadian expression in the
zebrafish pineal complex. Nat. Genet. 30, 117-121.

Gan, L., Mao, C. A., Wikramanayake, A., Angerer, L. M., Angerer, R. C. and Klein,

W. H. (1995). An orthodenticle-related protein from Strongylocentrotus purpuratus.
Dev. Biol. 167, 517-528.

Gerlach, G., Atema, J., Kingsford, M. J., Black, K. P. and Miller-Sims, V. (2007).
Smelling home can prevent dispersal of reef fish larvae. Proc. Natl. Acad. Sci. USA

104, 858-863.
Germot, A., Lecointre, G., Plouhinec, J. L., Le Mentec, C., Girardot, F. and Mazan,

S. (2001). Structural evolution of Otx genes in craniates. Mol. Biol. Evol. 18, 1668-
1678.

Ghosh, J., Wilson, R. W. and Kudoh, T. (2009). Normal development of the tomato
clownfish Amphiprion frenatus: live imaging and in situ hybridization analyses of
mesodermal and neurectodermal development. J. Fish Biol. 75, 2287-2298.

Hall, T. (2007). BioEdit: Biological Sequence Alignment. Carlsbad, CA: Ibis
Biosciences.

Harden, M. V., Newton, L. A., Lloyd, R. C. and Whitlock, K. E. (2006). Olfactory
imprinting is correlated with changes in gene expression in the olfactory epithelia of
the zebrafish. J. Neurobiol. 66, 1452-1466.

Hino, H., Miles, N. G., Bandoh, H. and Ueda, H. (2009). Molecular biological research
on olfactory chemoreception in fishes. J. Fish Biol. 75, 945-959.

Kablar, B., Vignali, R., Menotti, L., Pannese, M., Andreazzoli, M., Polo, C.,

Giribaldi, M. G., Boncinelli, E. and Barsacchi, G. (1996). Xotx genes in the
developing brain of Xenopus laevis. Mech. Dev. 55, 145-158.

Kelley, C. G., Lavorgna, G., Clark, M. E., Boncinelli, E. and Mellon, P. L. (2000).
The Otx2 homeoprotein regulates expression from the gonadotropin-releasing
hormone proximal promoter. Mol. Endocrinol. 14, 1246-1256.

Lecchini, D., Shima, J., Banaigs, B. and Galzin, R. (2005). Larval sensory abilities and
mechanisms of habitat selection of a coral reef fish during settlement. Oecologia 143,
326-334.

Leis, J. M., Siebeck, U. and Dixson, D. L. (2011). How Nemo finds home: the
neuroecology of dispersal and of population connectivity in larvae of marine fishes.
Integr. Comp. Biol. 51, 826-843.

Mallamaci, A., Di Blas, E., Briata, P., Boncinelli, E. and Corte, G. (1996). OTX2
homeoprotein in the developing central nervous system and migratory cells of the
olfactory area. Mech. Dev. 58, 165-178.

Matsuo, I., Kuratani, S., Kimura, C., Takeda, N. and Aizawa, S. (1995). Mouse Otx2
functions in the formation and patterning of rostral head. Genes Dev. 9, 2646-2658.

Miller-Sims, V. C., Atema, J., Gerlach, G. and Kingsford, M. J. (2011). How stable
are the reef odor preferences of settling reef fish larvae? Mar. Freshw. Behav. Physiol.

44, 133-141.
Müller, P., Yanze, N., Schmid, V. and Spring, J. (1999). The homeobox gene Otx of

the jellyfish Podocoryne carnea: role of a head gene in striated muscle and evolution.
Dev. Biol. 216, 582-594.

Munday, P. L., Dixson, D. L., Donelson, J. M., Jones, G. P., Pratchett, M. S.,

Devitsina, G. V. and Døving, K. B. (2009). Ocean acidification impairs olfactory
discrimination and homing ability of a marine fish. Proc. Natl. Acad. Sci. USA 106,
1848-1852.

Plouhinec, J. L., Sauka-Spengler, T., Germot, A., Le Mentec, C., Cabana, T.,
Harrison, G., Pieau, C., Sire, J. Y., Véron, G. and Mazan, S. (2003). The
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