SUPPLEMENTARY INFORMATION

Table S1. Subject descriptive characteristics, categorized by sex and athletic background.

Group Description	Age (years)	Height (m)	Leg Length (m)	Mass (kg)	BMI (kg m ⁻²)
All Males (n = 20)	21.6 ± 0.5	1.80 ± 0.01	0.94 ± 0.01	79.7 ± 3.0	24.6 ± 0.7
Male Track & Field Athletes $(n = 9)$	21.6 ± 0.8	1.78 ± 0.01	0.93 ± 0.01	73.4 ± 2.0	23.1 ± 0.5
Male Team Sport Athletes $(n = 5)$	20.2 ± 0.4	1.83 ± 0.03	0.97 ± 0.03	87.0 ± 8.6	25.9 ± 1.7
Male Recreationally Trained $(n = 6)$	22.7 ± 1.2	1.79 ± 0.03	0.92 ± 0.02	82.9 ± 5.7	25.7 ± 1.4
All Females (n = 20)	21.7 ± 0.4	1.67 ± 0.02	0.89 ± 0.01	59.0 ± 1.4	21.1 ± 0.5
Female Track & Field Athletes $(n = 6)$	23.0 ± 1.0	1.72 ± 0.02	0.91 ± 0.01	60.6 ± 2.0	20.4 ± 0.4
Female Team Sport Athletes $(n = 8)$	21.0 ± 0.3	1.62 ± 0.03	0.88 ± 0.02	58.4 ± 2.9	22.2 ± 0.6
Female Recreationally Trained $(n = 6)$	21.3 ± 0.3	1.70 ± 0.03	0.90 ± 0.02	58.2 ± 2.2	20.2 ± 1.1

All values are group means \pm standard error of the mean (s.e.m.).

Table S2. Additional thigh angular kinematic variables across speeds, with trials categorized by percentage top speed.

	Slow <75% Top Speed (n = 44 trials)	Intermediate 75-93% Top Speed $(n = 48 \text{ trials})$	Fast >93% Top Speed (n = 62 trials)
$ heta_{td}(\mathrm{rad},deg)$	0.49 ± 0.01 27.9 ± 0.6	$0.55 \pm 0.01 \dagger$ 31.7 ± 0.7	$0.61 \pm 0.01*$ † 35.0 ± 0.6
$ heta_{to}(\mathrm{rad},deg)$	0.36 ± 0.02	$0.43 \pm 0.02 \dagger$	$0.44 \pm 0.01 \dagger$
	20.7 ± 1.0	24.5 ± 1.0	25.3 ± 0.7
$\theta_{ext}(\mathrm{rad},deg)$	0.41 ± 0.02	$0.51 \pm 0.02 \dagger$	$0.55 \pm 0.01 \dagger$
	23.8 ± 1.2	29.2 ± 1.0	31.7 ± 0.8
$\theta_{flex}(\mathrm{rad},deg)$	0.78 ± 0.03	$0.98 \pm 0.03 \dagger$	$1.09 \pm 0.03 * \dagger$
	44.9 ± 1.9	56.2 ± 1.6	62.5 ± 1.5

All angular variables are absolute values. Values are means \pm standard error of the mean (s.e.m.).

Thigh angular variables: thigh angular position at touchdown (θ_{td}), thigh angular position at takeoff (θ_{to}), peak thigh extension during flight (θ_{ext}), and peak thigh flexion during flight (θ_{flex}).

 $[\]dagger$ indicates significantly different than Slow speed (p < 0.05)

^{*} indicates significantly different than Intermediate speed (p < 0.05)

Table S3. Additional thigh angular kinematic variables across top speed trials, with subjects categorized based on sex and top speed.

	Fast Males (n = 10)	Slow Males (n = 10)	Fast Females (n = 10)	Slow Females (n = 10)
$ heta_{td}(\mathrm{rad},deg)$	0.62 ± 0.02 35.4 ± 1.2	0.62 ± 0.02 35.4 ± 1.3	0.59 ± 0.04 34.0 ± 2.0	0.59 ± 0.01 34.0 ± 0.7
$ heta_{to} ext{(rad, } deg)$	0.40 ± 0.03 23.2 ± 1.6	0.47 ± 0.03 27.2 ± 1.6	0.47 ± 0.03 26.7 ± 1.7	0.50 ± 0.02 28.7 ± 1.4
$\theta_{ext}(\mathrm{rad}, deg)$	0.50 ± 0.03 28.6 ± 1.9	0.59 ± 0.04 33.8 ± 2.5	0.59 ± 0.03 33.7 ± 1.7	0.62 ± 0.03 35.5 ± 1.9
$ heta_{flex}(ext{rad}, deg)$	1.23 ± 0.07 70.3 ± 3.8	1.04 ± 0.07 59.6 ± 3.8	1.06 ± 0.06 60.6 ± 3.6	0.93 ± 0.01 53.2 ± 0.7

All angular variables are absolute values. Values are means \pm standard error of the mean (s.e.m.).

Thigh angular variables: thigh angular position at touchdown (θ_{td}), thigh angular position at takeoff (θ_{to}), peak thigh extension during flight (θ_{ext}), and peak thigh flexion during flight (θ_{flex}).

 $[\]dagger$ indicates significantly different (p < 0.05), Faster Males vs. Slower Males

^{*} indicates significantly different (p < 0.05), Faster Females vs. Slower Females

Fig. S1. Evaluation of the motion capture method for determining running speed. Running speed in the 31 to 39 m field of view (n = 154) measured by the radar gun is compared to speed determined by the motion capture method, with dashed Line of Identify (x = y).

Fig. S2. Evaluation of the motion capture method for determining ground contact time (T_c) .

For the sub-set of trials (n = 95) used to complete this validation, T_c measured by the force plate is plotted compared to T_c determined by the motion capture method, with dashed Line of Identify (x = y).

