SUPPLEMENTARY INFORMATION

Table S1. Subject descriptive characteristics, categorized by sex and athletic background.

Group Description	Age (years)	Height (m)	Leg Length (m)	Mass (kg)	BMI (kg m$\left.{ }^{-2}\right)$
All Males $(\boldsymbol{n}=\mathbf{2 0})$	$\mathbf{2 1 . 6} \pm \mathbf{0 . 5}$	$\mathbf{1 . 8 0} \pm \mathbf{0 . 0 1}$	$\mathbf{0 . 9 4} \pm \mathbf{0 . 0 1}$	$\mathbf{7 9 . 7} \pm \mathbf{3 . 0}$	$\mathbf{2 4 . 6} \pm \mathbf{0 . 7}$
Male Track \& Field Athletes $(n=9)$	21.6 ± 0.8	1.78 ± 0.01	0.93 ± 0.01	73.4 ± 2.0	23.1 ± 0.5
Male Team Sport Athletes $(n=5)$	20.2 ± 0.4	1.83 ± 0.03	0.97 ± 0.03	87.0 ± 8.6	25.9 ± 1.7
Male Recreationally Trained $(n=6)$	22.7 ± 1.2	1.79 ± 0.03	0.92 ± 0.02	82.9 ± 5.7	25.7 ± 1.4
All Females $(\boldsymbol{n}=\mathbf{2 0})$	$\mathbf{2 1 . 7} \pm \mathbf{0 . 4}$	$\mathbf{1 . 6 7} \pm \mathbf{0 . 0 2}$	$\mathbf{0 . 8 9} \pm \mathbf{0 . 0 1}$	$\mathbf{5 9 . 0} \pm \mathbf{1 . 4}$	$\mathbf{2 1 . 1} \pm \mathbf{0 . 5}$
Female Track \& Field Athletes $(n=6)$	23.0 ± 1.0	1.72 ± 0.02	0.91 ± 0.01	60.6 ± 2.0	20.4 ± 0.4
Female Team Sport Athletes $(n=8)$	21.0 ± 0.3	1.62 ± 0.03	0.88 ± 0.02	58.4 ± 2.9	22.2 ± 0.6
Female Recreationally Trained $(n=6)$	21.3 ± 0.3	1.70 ± 0.03	0.90 ± 0.02	58.2 ± 2.2	20.2 ± 1.1

All values are group means \pm standard error of the mean (s.e.m.).

Table S2. Additional thigh angular kinematic variables across speeds, with trials categorized by percentage top speed.

	Slow <75\% Top Speed $(n=44$ trials $)$	Intermediate $75-93 \%$ Top Speed $(n=48$ trials $)$	Fast $>93 \%$ Top Speed $(n=62$ trials $)$
$\theta_{\text {td }}(\mathrm{rad}, \mathrm{deg})$	0.49 ± 0.01	$0.55 \pm 0.01 \dagger$	$0.61 \pm 0.01^{* \dagger}$
	27.9 ± 0.6	31.7 ± 0.7	35.0 ± 0.6

All angular variables are absolute values. Values are means \pm standard error of the mean (s.e.m.).
Thigh angular variables: thigh angular position at touchdown $\left(\theta_{t d}\right)$, thigh angular position at takeoff $\left(\theta_{t o}\right)$, peak thigh extension during flight $\left(\theta_{\text {ext }}\right)$, and peak thigh flexion during flight $\left(\theta_{f l e x}\right)$.
\dagger indicates significantly different than Slow speed ($\mathrm{p}<0.05$)

* indicates significantly different than Intermediate speed ($\mathrm{p}<0.05$)

Table S3. Additional thigh angular kinematic variables across top speed trials, with subjects categorized based on sex and top speed.

	Fast Males $(n=10)$	Slow Males $(n=10)$	Fast Females $(n=10)$	Slow Females $(n=10)$	
$\theta_{t d}(\mathrm{rad}, \mathrm{deg})$	0.62 ± 0.02	0.62 ± 0.02		0.59 ± 0.04	0.59 ± 0.01
	35.4 ± 1.2	35.4 ± 1.3		34.0 ± 2.0	34.0 ± 0.7
$\theta_{\text {to }}(\mathrm{rad}, \mathrm{deg})$	0.40 ± 0.03	0.47 ± 0.03		0.47 ± 0.03	0.50 ± 0.02
	23.2 ± 1.6	27.2 ± 1.6		26.7 ± 1.7	28.7 ± 1.4
$\theta_{\text {ext }}(\mathrm{rad}, \mathrm{deg})$	0.50 ± 0.03	0.59 ± 0.04		0.59 ± 0.03	0.62 ± 0.03
	28.6 ± 1.9	33.8 ± 2.5		33.7 ± 1.7	35.5 ± 1.9
$\theta_{\text {flex }}(\mathrm{rad}, \mathrm{deg})$	1.23 ± 0.07	1.04 ± 0.07		1.06 ± 0.06	0.93 ± 0.01
	70.3 ± 3.8	59.6 ± 3.8		60.6 ± 3.6	53.2 ± 0.7

All angular variables are absolute values. Values are means \pm standard error of the mean (s.e.m.).
Thigh angular variables: thigh angular position at touchdown $\left(\theta_{t d}\right)$, thigh angular position at takeoff $\left(\theta_{t o}\right)$, peak thigh extension during flight $\left(\theta_{\text {ext }}\right)$, and peak thigh flexion during flight $\left(\theta_{f l e x}\right)$.
\dagger indicates significantly different ($\mathrm{p}<0.05$), Faster Males vs. Slower Males

* indicates significantly different ($\mathrm{p}<0.05$), Faster Females vs. Slower Females

Fig. S1. Evaluation of the motion capture method for determining running speed. Running speed in the 31 to 39 m field of view $(n=154$) measured by the radar gun is compared to speed determined by the motion capture method, with dashed Line of Identify $(x=y)$.

Fig. S2. Evaluation of the motion capture method for determining ground contact time ($\boldsymbol{T}_{\boldsymbol{c}}$). For the sub-set of trials $(n=95)$ used to complete this validation, T_{c} measured by the force plate is plotted compared to T_{c} determined by the motion capture method, with dashed Line of Identify ($\mathrm{x}=\mathrm{y}$).

