Marker	Ecotype	References and sources
ET1335	Ler	Sundaresan et al., 1995; Cold Spring Harbor Laboratory
GT5211*	Ler	Sundaresan et al., 1995; Cold Spring Harbor Laboratory
553-643**	C24	Goddijn et al., 1993; van den Berg et al., 1995; Mattsson et al., 1999
Athb8-GUS	Col-0	Baima et al., 1995
AtP5K1-GUS	C24	Elge et al., 2001
DR5-GUS	Col-0	Ulmasov et al., 1997
ET3845	Ler	Sundaresan et al., 1995; ABRC stock centre (accession number CS25530)
GT525	Ler	Sundaresan et al., 1995; ABRC stock centre (accession number CS25632)
GT2845	Ler	Sundaresan et al., 1995; ABRC stock centre (accession number CS25649)
GT5978	Ler	Sundaresan et al., 1995; ABRC stock centre (accession number CS25697)
GT6224	Ler	Sundaresan et al., 1995; ABRC stock centre (accession number CS25725)
GT6644	Ler	Sundaresan et al., 1995; ABRC stock centre (accession number CS25817)

Table S1. Origins of marker lines

*Line GT5211 was isolated in a large-scale gene trap insertional mutagenesis (Sundaresan et al., 1995). The insertion is presumed to disrupt the coding sequence of GATA transcription factor 5 (accession number At5g66320) (Jeong and Shih, 2003) (http://genetrap.cshl.org/Home.html), but we have not observed anatomical abnormalities in homozygous individuals.

**Line 553-643 has previously been reported to be expressed in the root vascular cylinder, including the most distal region of the prostele, as well as in the phloem of mature vascular strands (van den Berg et al., 1995; Mattsson et al., 1999).

References

- Baima, S., Nobili, F., Sessa, G., Lucchetti, S., Ruberti, I. and Morelli, G. (1995). The expression of the *Athb-8* homeobox gene is restricted to provascular cells in *Arabidopsis thaliana*. *Development* 121, 4171-4182.
- Elge, S., Brearley, C., Xia, H. J., Kehr, J., Xue, H. W. and Müller-Röber, B. (2001). An *Arabidopsis* inositol phospholipid kinase strongly expressed in procambial cells: synthesis of PtdIns(4,5)P2 and PtdIns(3,4,5)P3 in insect cells by 5-phosphorylation of precursors. *Plant J.* 26, 561-571.
- Goddijn, O. J., Lindsey, K., van der Lee, F. M., Klap, J. C. and Sijmons, P. C. (1993). Differential gene expression in nematode-induced feeding structures of transgenic plants harbouring promoter-gusA fusion constructs. *Plant J.* 4, 863-873.
- Jeong, M. J. and Shih, M. C. (2003). Interaction of a GATA factor with *cis*-acting elements involved in light regulation of nuclear genes encoding chloroplast glyceraldehyde-3-phosphate dehydrogenase in *Arabidopsis. Biochem. Biophys. Res. Commun.* 300, 555-562.
- Mattsson, J., Sung, Z. R. and Berleth, T. (1999). Responses of plant vascular systems to auxin transport inhibition. *Development* 126, 2979-2991.
- Sundaresan, V., Springer, P., Volpe, T., Haward, S., Jones, J. D., Dean, C., Ma, H. and Martienssen, R. (1995). Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. *Genes Dev.* 9, 1797-1810.
- Ulmasov, Y., Murfett, J., Hagen, G. and Guilfoyle, T. J. (1997). Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. *Plant Cell* 9, 1963-1971.
- van den Berg, C., Willemsen, V., Hage, W., Weisbeek, P. and Scheres, B. (1995). Cell fate in the *Arabidopsis* root meristem determined by directional signalling. *Nature* **378**, 62-65.

	Leaf		Leaf size		Mesophyll differentiation	
DAG	stage	Leaf shape	$(\times 10^3 \mu m^2)$	Procambial status	1 st IA	2nd IA
Cond	ition A					
2	0 DAI	semispherical (48/50)	0.61±0.01 (13)	none (50/50)	na	na
3	1 DAI	cylindrical (49/50)	3.00±0.21 (17)	1 st order (46/50)	na	na
4	2 DAI	oval (42/50)	8.86±0.65 (14)	1 st order (44/50)	na	na
5	3 DAI	oval (50/50)	17.94±1.00 (12)	2 nd order 1 st loop (41/50)	0/70	na
6	4 DAI	oval (50/50)	63.22±5.85 (10)	2 nd order 2 nd loop (36/50)	0/70	0/70
7	5 DAI	round (30/50)	349.99±26.55 (17)	2 nd order 2 nd loop (32/50)	66/70	0/70
8	6 DAI	round (38/50)	978.11±97.41 (14)	2 nd order 3 rd loop (34/50)	70/70	55/70
Cond	ition B					
2	0 DAI	semispherical (50/50)	$0.80\pm0.00(10)$	none (50/50)	na	na
3	1 DAI	cylindrical (50/50)	3.67±0.12 (16)	1st order (48/50)	na	na
4	2 DAI	oval (37/50)	8.52±0.78 (14)	1 st order (40/50)	na	na
5	3 DAI	oval (46/50)	19.34±2.38 (12)	2 nd order 1 st loop (50/50)	0/70	na
6	4 DAI	oval (50/50)	96.65±7.09 (15)	2 nd order 2 nd loop (35/50)	66/70	4/70
7	5 DAI	round (36/50)	308.63±35.20 (16)	2 nd order 2 nd loop (27/50)	70/70	62/70
8	6 DAI	round (42/50)	978.11±107.93 (14)	2 nd order 3 rd loop (42/50)	70/70	70/70
Cond	ition C					
2	na	na	na	na	na	na
3	0 DAI	semispherical (44/50)	0.98±0.01 (18)	none (50/50)	na	na
4	1 DAI	cylindrical (50/50)	2.65±0.01 (20)	primary (47/50)	na	na
5	2 DAI	oval (42/50)	9.32±0.67 (12)	primary (33/50)	na	na
6	3 DAI	oval (50/50)	18.63±1.07 (14)	secondary 1st loop (39/50)	21/70	na
7	4 DAI	oval (40/50)	56.86±3.09 (14)	secondary 2nd loop (35/50)	68/70	33/70
8	5 DAI	round (42/50)	147.84±12.60 (12)	secondary 2nd loop (38/50)	70/70	70/70

Table S2. Leaf development under different growth conditions

Growth condition-dependent morphology of leaves evaluated by shape (defining DAI relative to DAG), size (determined from digital images using Image J 1.30 software), procambial status (referring to formation of particular procambial strands) and mesophyll differentiation (referring to the presence of mesophyll in particular IAs). Leaf size values as mean±s.e.m; number of samples is in parentheses. Other values in parentheses refer to the fraction of primordia displaying a particular feature. All observations are based on whole-mount preparations of Athb8-GUS-stained first leaves grown under the indicated conditions. Note that except for mesophyll differentiation, leaf development proceeds very similarly under all conditions between 0 DAI and 4 DAI, the phase critical for procambium formation. na, not applicable.