Table S3. γ^2 calculations for double-mutant seeds

Hypotheses		Phenotypic classes					Degree of	
		[WT]	[dme]	[atlig1]	[atlig1/dme]	χ²	freedom	Р
AtLIG1 and DME are in	Obs	34	75	21	0			
independent pathways and atlig1; dme seeds show both phenotypes	Exp (%)	26	13.7	13.7	46.6			
	Exp (<i>n</i> =131)	34	18	18	61			
	(Obs-Exp) ² /Exp	0	180.5	0.88888889	61	242.3888889	4–1=3	<i>P</i> <0.001
The atlig1 and dme mutations	Obs	34	75	21	0			
are synthetic lethal and atlig1; dme seeds abort	Exp (%)	26						
	Exp (<i>n</i> =131)	34	18	18	61			
	(Obs-Exp) ² /Exp	0	180.5	0.88888889	61	242.3888889	4–1=3	<i>P</i> <0.001
atlig1 is epistatic over dme and	Obs	34	75	21	N.E.			
atlig1; dme seeds have an atlig1 phenotype	Exp (%)	26	60.3	13.7	_			
	Exp (<i>n</i> =131)	34	18	79	_			
	(Obs-Exp) ² /Exp	0	180.5	41.12658228	_	221.6265823	3–1=2	<i>P</i> <0.001
dme is epistatic over atlig1 and	Obs	34	75	21	N.E.			
atlig1; dme seeds have a dme phenotype	Exp (%)	26	13.7	60.3	_			
	Exp (<i>n</i> =131)	34	79	18	_			
	(Obs-Exp) ² /Exp	0	0.202531646	0.88888889	_	1.091420534	3–1=2	<i>P</i> >0.5
Both mutations complement	Obs	34	75	21	N.E.			
each other and <i>atlig1; dme</i>	Exp (%)	72.6	13.7	13.7	_			
seeds have a WT phenotype	Exp (<i>n</i> =131)	95	18	18	_			
	(Obs-Exp) ² /Exp	39.16842105	180.5	0.88888889	_	220.5573099	3–1=2	P<0.001

(WT) male will produce 25% WT seeds, 25% dme seeds and 25% atlig1; dme seeds. Owing to the incomplete penetrance of each mutation observed in the single-mutant control crosses (see Table 2), the proportion of atlig1 and dme seeds showing a phenotype will be 22.25% (0.25 × 0.89) and 17.5% (0.25 × 0.7), respectively. Thus, the proportion of expected WT seeds is 35.25% [0.25 + (0.25 - 0.2225) + (0.25 - 0.175)]. However, 35.25% of 523 is 184 seeds, and we obtained 218 WT seeds. The 34 extra seeds (218 – 184) are most likely to be double-mutant atlig1; dme seeds that show a WT phenotype due to the incomplete penetrance of each mutation. However, it is not possible to predict the degree of penetrance for each mutation in this double-mutant background as the penetrance is expected to vary depending on the genetic background. Thus, we calculated that out of 131 genetically atlig1; atlig1; atlig1 and atlig1; atlig1 and atlig1; atlig1 and atlig1

Obs, observed.

Exp, expected.

N.E., none expected.

A female atlig1-3/+; dme-4/+ crossed with a wild-type