Table S1. Primers used in this study

Name	Sequence	Notes*,‡
P229	GCCGGCAGCTGCGTGGTAGAGGAAC	1F
P228	GTTTCGCAGTAGGGTTTGGTGAGGGTGGTC	1R
P227	TGACCAGAAGCGGACAAGACCAGAAC	2F
P226	GATGGAGCGGCGACAAGGGAGGGAC	2R
P225	CCGCCTGGCTATACGAAACCGACTCTG	3F
P224	AATGGTGTTGGTGATCGAAGGTGGAAAAG	3R
P223	TATCCGGTTCCGTTGCTCCATTCTCGTA	4F
P222	CCCCGCCCTCGCTTCGCTATC	4R
P221	GCGGCCCCATCCCCAGCACTGTTTTGTAT	5F
P220	GTGCGGACTGCGGACGGACAT	5R
P219	CCTGCGCCACGACGACTGCCTCCTCAAC	6F
P218	GCCCAAAAATTTCACATCCCGCATCCAGT	6R
P217	CTCCGCGTTTTGTTCTTTTGCCGATGTTC	7F
P216	AGTCACCCCATCCCACCACCTCTGTC	7R
P238	CCGTGGTGCCTTGTTTGCTTGCTCGCTCA	8F
P239	GGGCACATCCAATACAATAATCCTCCATA	8R
P240	CGGCGGCCCAAGATCGATTTTCCTATT	9F
P241	CCGTTCCGTTCGTGCCACCATCATTGTTA	9R
P242	TACGAAGAGCTGAAATCAAACACATAAT	10F
P243	CGTCCCGGTCGATCCTTCAAACAG	10R
P258	GCCTCCATTTCGTCGAATCC	Universal MuTIR
P292	AGTATCTTGCGGGGCAGTG	R
F14	AACCCTACTGCGAAACAACTGC	F
R15	ATCAGGACGCAGGATTCTCG	R
cyanase	GCTGGTGAGGAGAAACA	F
cyanase	CAGCAATCATGCCAGGTAGA	R

^{*}The first ten pairs of primers (1F-10R) were first used to identify the deletion in the *mac1-1* mutant.

[‡]Primers P222, P223 and P220, P223 were used for *mac1-1* genotyping, and primers P222, P223, P258 and P292 for *mac1-Y211* genotyping.

Table S2. Independent segregation of mac1 and am1

Table 52: Independent segregation of much and umi								
Crosses and families*	Segregation fertile:sterile [‡]	Cytology fem plants§	Total [¶]					
		mac1/mac1	am1/am1	mac1/mac1 am1/am1				
1. F2 $(am1-485/+ \times mac1+)$	28:17	7	8	1	16			
2. F2 $(am1-1/+ \times mac1/+)$	28:17	7	3	3	13			
3. F2 $(am1-2/+ \times mac1/+)$	32:18	8	3	1	12			
Total	88:52	22	14	5	41			
χ^2	$\chi^2 (9:7) = 2.47$			χ^2 (3:3:1) =2.56				

^{*}The individual crosses started from the heterozygotes of two mutants ($mac1/+ \times am1/+$). The F1 plants were self-pollinated and F2 were studied. This experiment was carried out before molecular cloning of the am1 and mac1 genes. All genotypes were determined by genetic crosses.

[‡]Only F2 families segregating fertile and sterile plants with the expected ratio 9:7 were further analyzed. Meiotic phenotypes of all fertile plants were verified with aceto-carmine squashes of young anthers to confirm their normal meiosis.

[§]The sterile plants in these families were further investigated. Several ovules of each sterile plant were squashed, and megaspore mother cells (MMC) were isolated. The number of MMCs and the meiosis status were studied as previously described (Sheridan et al., 1996). Plants with single MMC per ovule showing the mitotic *am1-1* phenotype were grouped in the *am1* mutant class. Plants with multiple MMCs and regular meiosis were grouped in the *mac1* mutant class. Double mutant *am1*; *mac1* ovules exhibited both phenotypes as they contained multiple MMCs that conducted the aberrant *am1* meiocyte mitosis. The expected ratio of these three classes is 3:3:1.

Total numbers of sterile plants investigated by microscopic evaluation. The total χ^2 values are shown in the last cell of the column.

Table S3. Independent segregation of mac1 and afd1

Crosses and families*	Segregation	Cytology fer	Total		
	fertile:sterile [‡]	mac1/mac1	afd1/afd1	mac1/mac1	
				afd1/afd1	
1. F2 ($afd1-1/+ \times mac1+$)	31:32	12	17	3	32
2. F2 ($afd1-1/+ \times mac1+$)	40:35	18	14	3	35
Total	71:67	30	31	6	67
Expected if 9:3:3:1	77.6:60.4	25.9	25.9	8.6	
χ^2 (9:3:3:1)	0.56	0.52	1.01	0.8	2.39

^{*}The individual crosses started from heterozygotes of two mutants ($mac1/+ \times afd1/+$). The F1 plants were self-pollinated and F2 were studied. This experiment was carried out before molecular cloning of the afd1 and mac1 genes; therefore, all genotypes were determined by genetic crosses.

[‡]Only F2 families segregating fertile and sterile plants with the expected ratio 9:7 were further analyzed. The meiotic phenotype of all fertile plants was screened using aceto-carmine squashes of young anthers to confirm their normal meiosis.

[§]The sterile plants in these families were further investigated. Several ovules of each sterile plant were squashed, and megaspore mother cells (MMC) were isolated, counted and scored for meiotic characteristics previously described (Sheridan et al., 1996). Plants with a single MMC per ovule showing the *afd1* meiotic phenotype were grouped in the *afd1* mutant class. Plants with multiple MMCs and regular meiosis were grouped in the *mac1* mutant class. Double mutants, *afd1*; *mac1*, expressed both phenotypes as they contained multiple MMCs with the *afd1* meiotic defect. The expected ratio of these three classes is 3:3:1.

[‡]Total number of sterile plants investigated microscopically. The total χ^2 values are shown in the last cell of the column.

Table S4. Numbers of ovules, megaspore mother cells analyzed in six mac1/mac1; afd1/afd1 double

mutant plants

Family	Numbers	Megaspo	Stages of meiosis							
	of ovule	mother c								
	examined	(MMC								
		Average	Total	Inter-	L-P	Dia	M1-T1	Dyad	Triad	Tetrad
				phase						
1-14	70	4.9 (2-9)	340	11	276	3	26	23	1	0
1-26	45	7.1 (3-14)	320	10	175	1	21	82	28	3
1-57	40	4.0 (2-8)	159	4	121	1	6	26	1	0
Subtotal	155	5.3 (2-14)	819	25	572	5	53	131	30	3
2-7	10	5.9 (4-10)	59	1	15	9	4	21	2	7
2-15	5	6.0 (4-7)	30	0	11	0	3	7	5	4
2-21	13	7.1 (4-10)	93	4	59	6	9	11	1	3
Subtotal	28	6.5 (4-10)	182	5	85	15	16	39	8	14
Total	183	5.5 (2-14)	1001	30	657	20	69	170	38	17

L-P, leptotene throughout oachytene; Dia, diakinesis; M1-T1, metaphase 1 throughout telophase 1.