Fig. S1. Msgn1 loss-of-function strategies. (**A**) The msgn1 morpholino oligonucleotide (msgn1MO) was targeted to the initiation ATG codon of the msgn1 gene. (**B**) The $msgn^{fh273}$ allele carries a point mutation that substitutes the cytosine at position 1274 with a thymine, changing the glutamine at position 92 into a stop codon. The resulting protein is truncated in the middle of the first helix of the HLH motif. Fig. S2. Loss of msgn1 does not enhance the tail deficiency of ntt^{-} mutants. The progeny of a double heterozygous $msgn1^{+/-}$; $ntl^{+/-}$ cross were sorted into three distinguishable phenotypic classes and subsequent genotyping showed that embryos with a normal tail phenotype were wt (A), embryos with an enlarged tailbud were $msgn1^{-/-}$ (B) and embryos with similar severe tail truncations were either $ntl^{-/-}$ or $msgn1^{-/-}$; $ntl^{-/-}$ double mutants (C). Genotypes were present at the expected ratios. **Fig. S3. Msgn1 regulates posterior development.** (A,E,I) Live images of wt (A), *msgn1MO*-injected (E) and *msgn1*-overexpressing (I) embryos. (B-D,F-H,J-L) Nuclei (DAPI, blue) and F-actin (phalloidin, green) staining of wt (B-D), *msgn1MO*-injected (F-H) and *msgn1*-overexpressing (J-L) embryos. (B,F,J) Confocal sections at the level of the tailbud (B,F,J), the trunk somites (C,G,K) and the notochord (D,H,L). **Fig. S4. Generation and validation of the hsp70:HA-***msgn1* **transgenic line.** (**A**) The construct used to generate the hsp70:HA-*msgn1* transgenic line. The N-terminus of the *msgn1* gene was fused with an HA tag and placed under an *hsp70* promoter. In addition, the β-*crystallin* promoter was used to drive CFP in the lens to facilitate identification of transgenic embryos. (B-N') Embryos were obtained from a cross between hsp70:HA-*msgn1* heterozygous and wt fish, generating a batch with an expected frequency of 50% transgenics and 50% wt control siblings. (**B-E**') In situ hybridisation showing *msgn1* mRNA levels in hsp70:HA-*msgn1* transgenic embryos and their wt sibling controls, with no heat shock (B) or heat shocked for 1 hour at the 13-somite stage and fixed immediately (C,C'), 2 hpHS (D,D') and 7 hpHS (E,E'). (**F-K**') Levels of HA-tagged Msgn1 protein (F-H') at the level of the tenth somite in hsp70:HA-*msgn1* transgenic embryos fixed immediately after heat shock (0 hpHS), 2 hpHS and 7 hpHS and their corresponding control siblings. (I-K') The same embryos as in F-H' counterstained with DAPI to reveal the nuclei. (**L-N**') Expression of *ntl*, *wnt8* and *tbx24* in hsp70:HA-*msgn1* transgenic embryos and their respective control siblings heat shocked for 1 hour at the 7-somite stage and fixed 7 hpHS. Red arrowhead, ectopic expression of *tbx24* in the tailbud. hpHS, hours post-heat shock. ## msgn1 expression Fig. S5. Regulation of msgn1 expression during segmentation. (A,A') Similar expression of msgn1 in the presomitic mesoderm of 8-somite stage embryos was detected in wt siblings (A) and msgn1-- embryos (A'). (B,B') With no heat shock, a normal pattern of expression of msgn1 is observed in hsp70:ntl injected embryos and their uninjected siblings. (C-F') All embryos were heat shocked for 30 minutes at the 13-somite stage. (C,C') Ectopic expression of msgn1 is induced in hsp70:ntl injected embryos when compared with their uninjected siblings. (D,D') A complete absence of msgn1 expression is observed in hsp70:dnfgfr1 transgenic embryos when compared with their siblings. (E,E') Ectopic expression of msgn1 is induced in hsp70:dagcat injected embryos when compared with their uninjected siblings. (F,F') A severe downregulation of msgn1 expression is observed in hsp70:dkk1 transgenic embryos when compared with their siblings. Transgenic embryos were obtained from a cross between heterozygous transgenics and wt fish, generating batches with the expected frequency of 50% transgenics and 50% wt control siblings. ## **Fig. S6.** The mild *snail1a* loss-of-function phenotype. Eighty percent (n=123, three different batches) of the *snail1aMO*-injected embryos (\mathbf{B} , \mathbf{B}') show an indistinguishable phenotype from controls (\mathbf{A} , \mathbf{A}') and 20% show a fin-fold phenotype (\mathbf{C} , \mathbf{C}'). (\mathbf{A}' - \mathbf{C}') Magnification of the tail region corresponding to the embryos shown in \mathbf{A} - \mathbf{C} .