

Fig. S1. Targeted disruption of *Irx6*. A 5.5 kb *NcoI/Hind*III *Irx6* fragment was cloned as the 5' arm of the targeting construct upstream of the *lacZ* gene. The targeting construct contained a neomycin resistance cassette and a thymidine kinase cassette (*Pgk-Neo-SV40 polyA*) that was cloned in reverse orientation with respect to the targeting vector. A 2 kb *PvuII/NotI Irx6* fragment was cloned as the 3' arm of the targeting construct. Following homologous recombination, a mutated *Irx6* allele was generated that had lost all of exon 1 and part of exon 2. (**A**) Construct used. (**B**) Southern blot of the targeted ES cell DNA, clone B3. Southern blot analysis for homologous recombinants was carried out following an *XbaI* digest using a 2 kb *Hind*III fragment probe 5' to the left arm of the targeting construct. The wild-type band size is 8.5 kb and the targeted band size is 10 kb. Two positive clones were used to give rise to the knock-in founder mice. (**C**) PCR showing wild-type, homozygous ($Irx6^{lacZ/lacZ}$) and heterozygous ($Irx6^{l-lacZ}$) mice. $Irx6^{l-lacZ}$ heterozygous crosses produced offspring (+/+, +/lacZ, lacZ/lacZ) with the expected Mendelian ratio and $Irx6^{lacZ/lacZ}$ mice were able to reproduce successfully. Both developing and adult $Irx6^{lacZ/lacZ}$ mice were indistinguishable from their wild-type littermates in terms of size and general behavior. (**D**) In situ hybridization (upper) for Irx6 expression in the P0 $Irx6^{l-lacZ}$ mouse retina and X-gal staining (lower) in an adjacent section showing the overlapping expression pattern between endogenous Irx6 expression and expression of the Irx6:βgal reporter. The riboprobe corresponds to the full-length cDNA for Irx6. The protocol for in situ hybridization has been previously described (Chow et al., 2001), except the hybridization temperature was 56°C.

Fig. S2. The *Irx6*:βgal reporter is expressed in a subset of ganglion cells, but is not expressed in type 4 bipolar cells. (A-A") The *Irx6*: βgal reporter co-immunolabels with the ganglion cell marker Brn3b in a subset of cells in the adult $Irx6^{+/lacZ}$ mouse retina. The dashed lines indicate the boundary of the ganglion cell layer. The outlined cell is both positive for Brn3b and Irx6: βgal. (**B-B**") In the adult $Irx6^{+/lacZ}$ mouse retina, the type 4 bipolar cell marker calsenilin does not co-immunolabel with Irx6:βgal, indicating that Irx6 is not expressed in type 4 OFF bipolar cells. The arrow indicates a cell that is positive for Irx6:βgal, but not for calsenilin; the arrowhead indicates a calsenilin-positive cell that is negative for Irx6:βgal.

Fig. S3. Irx6: β gal is strongly expressed in the $Irx6^{IacZ/IacZ}$ mouse and can be visualized in the inner plexiform layer. Irx6: β gal (A) co-immunolabels with Synaptotagmin 2 (Syt2) (B,C) in both the upper and lower zones of the inner plexiform region, corresponding to the OFF and ON projecting regions. Other ON bipolar cells (type 5 or rod bipolar cells) do not show expression of the Irx6: β gal reporter as all of the Cabp5-expressing cells that co-immunolabeled with Irx6: β gal also expressed Hcn4. Scale bar 10 μ m.

Fig. S4. In both the $Irx6^{lacZ/lacZ}$; $Vsx1^{+/AltB5}$ and $Irx6^{lacZ/lacZ}$; $Vsx1^{AltB5/AltB5}$ mouse, not all Irx6: β gal-positive cells express Hcn4. Arrowheads indicate Irx6: β gal-positive cells that do not express Hcn4 whereas arrows indicate Irx6: β gal-positive cells that express Hcn4. Bhlhb5 immunolabeling is present in some of the Irx6: β gal cells that do not co-immunolabel with Hcn4 in the $Irx6^{lacZ/lacZ}$; $Vsx1^{+/AltB5}$ retina.

Fig. S5. Ganglion cell projections to the brain are grossly normal in $Irx6^{lacZ/lacZ}$ mice. As Irx6 is expressed in a subset of retinal ganglion cells (supplementary material Fig. S2), we investigated whether Irx6 is required for ganglion cell axon outgrowth, migration and targeting. Cholera toxin subunit B coupled to either Alexa Fluor 488 (left eye) or Alexa Fluor 555 (right eye) (Invitrogen), was injected into the intravitreal space of the eye (2 μl, 5 μg/μl per eye) using a 33G Hamilton needle at 2 months of age. After 24 hours, mice were euthanized and brain tissue fixed for 10 minutes with 4% paraformaldehyde in phosphate-buffered saline (PBS) by trans-cardial perfusion, followed by overnight fixation of tissue in 4% paraformaldehyde in PBS at 4°C. (A,B) The optic nerves carrying different dyes branched out contralaterally at the optical chiasm, with a subset of nerve fibers projecting ipsilaterally with no difference between $Irx6^{+/lacZ}$ (A) and $Irx6^{lacZ/lacZ}$ (B) mice. (C,D) In the lateral geniculate nucleus, nerves projecting contralaterally (red) and ipsilaterally (green) occupy distinct regions in a manner that was indistinguishable between control $Irx6^{+/lacZ}$ (C) and $Irx6^{lacZ/lacZ}$ (D) mice. (E,F) Similarly, in the superior colliculus, where most projections were formed contralaterally, no difference was observed between control $Irx6^{+/lacZ}$ (E) and $Irx6^{lacZ/lacZ}$ (F) mice. Scale bar: 100 μm in A,B,E,F; 200 μm in C,D.

Table S1. Antibody dilutions and sources

Antigen	Antiserum	Source	Working dilution ⁵
Vsx1	Rabbit anti-Vsx1	R. L. Chow, University of Victoria, Victoria, BC	1:100
Recoverin	Rabbit anti-recoverin ¹	Millipore/Chemicon (AB5585)	1:500
NK3R	1. Rabbit anti-NK3R ²	A. Hirano, Department of Neurobiology, Los Angeles, CA	1:500
	2. Rabbit anti-NK3R ³	Calbiochem (480739)	1:5000
Cabp5	Rabbit anti-Cabp5	F. Haeseleer, Department of Ophthalmology, Seattle, WA	1:500
ΡΚCα	Rabbit anti-PKCα	Sigma (P4334)	1:20,000
Calbindin	Mouse anti-calbindin	Sigma (C2724)	1:500
Chx10	1. Rabbit anti-Chx10	R. R. McInnes, Hospital for Sick Children, Toronto	1:500
	2. Sheep anti-Chx10	Exalpha (X1180P)	1:1000
β-Gal	 Chicken anti-β-Gal⁴ Rabbit anti-β-Gal 	Abcam (ab9361) Cappel (55976), MP Biomedicals Sigma (G8021)	1:300/1:12,500 1:5000
	3. Mouse anti-β-Gal		
Bhlhb5	Goat anti-β3 (E17)	Santa Cruz (sc-6045)	1:1000
HCN4	 Guinea pig anti-HCN4γ Rat anti-HCN4γ PG2-1A4 	F. Müller, Forschungszentrum, Jülich, Germany	1:500 1:1
Irx5	Rabbit anti-Irx5	C. C. Hui, Hospital for Sick Children, Toronto	1:50
PKA RIIβ	Mouse anti-PKA RIIβ	BD science (612550)	1:3000
Calretinin	Goat anti-calretinin	Chemicon (AB1559)	1:2500
Brn3b	Goat anti-Brn3b	Santa Cruz (sc-31989)	1:100
Syntaxin	Mouse anti-syntaxin	Sigma (S0664)	1:500
Calsenilin	Mouse anti-calsenilin	W. Wasco, Harvard Medical School, Charlestown, MA clone 40A5	1:2000
Synaptotagmin	Mouse anti-Syt2/ZNP-1	Zebrafish International Resource Center	1:250

Labeling for recoverin was carried out using 0.1% Triton X-100 in place of Tween 20. Immunolabeling for NK3R was done in the absence of horse serum.

³Mice were perfused with 4% PFA prior to enucleation and the retina was then left in 4% PFA for 20 minutes at room temperature.

⁴Chicken anti-β-gal shows some non-specific labeling of amacrine cells in this system

⁵Antibodies were diluted in PBS containing 1% horse serum and 0.1% Tween 20, except as noted above.

Table S2. Vectors used

Vector	Host	Reference to	Putative Irx6-binding
		sequence number	site (IBS)*
		below [‡] or vector	
	~~	source	
pRecoverin_1461.luc	pGL4.26	1	ACATGT
	KpnI and HindIII		
	sites		
pVsx1_9130.luc	pGL3P	2	ACACGTGT
	SacI and BglII		
	sites		
pVsx1_3377.luc	pGL3P	3	ACACGTGT
	SacI and BglII		
	sites		
pVsx1_2232.luc	pGL3P	4	ACATGTGT
	SacI and BglII		
	sites		
pNK3R_1398.luc	pGL3P	5	ACAGGTGT
	SacI and BglII		
	sites		
pIrx6	pBSK-EF1_	C. C. Hui,	
_	SflI and $XbaI$	Hospital for Sick	
	sites	Children, Toronto	
pIrx5	pBSK-EF1_	C. C. Hui,	
	SfII and $XbaI$	Hospital for Sick	
	sites	Children, Toronto	
Renilla	pRL-TK	Promega	
Luciferase with	pGL4.26	Promega	
mini-promoter	*		
Luciferase with	pGL3P	Promega	
SV40 promoter	1		

^{*}Putative IBS identified using FIMO (http://meme.nbcr.net/meme/intro.html).

[‡]Appropriate restriction enzyme sites have been integrated into the primers and are found in the sequence below (primers are italicized and putative IBS is in bold).

- ***a region containing more than 44% GT repeat and 20% TA repeat has been deleted from the above sequence.
- $2. TACGAGCTCTTCCATAATCTGTCCATTGGTGAGAGTGGGGTGTTGAAATCTCCCACT\\ ATTATTATGTAATGTTCAATGTGTGTTTTTGAGCTTTAGTAATGTTTCTTTTACACGTGT\\ GGGTGCCCTTGCCTATGGGGCATACATGTTTAGAATTGAGAATTCAATTTTGGATTTTTC\\ GTATGGTGGGTATGAATAAGATTTCCCATCTCTTTTGATAACTTTTGGTTGAAAGTCTA\\ TTTTACTGGATATTAGAATGGCTACTTCAGCTTGTTTCTAGATCTGTT\\ \\$
- 3. TACGAGCTCAGTACTTGACGATGAGGTCCCTGGACACAAAGCTGGAGTCAGTGTCTG
 AGTATAGATTCATGGGAGGGTCGGATCTCAGAACAGAGGGATAGCAGAGAAGCAGGAGA
 AGGAGCCACGCAAAGTTGCCACTGCCTTATCCACGAATGGGGAGGAACTGGAAACAGAC
 ACTGCAATTGTCCTCCTTGAAACACGTGTGTGACCTCTTAGTAACTCAGTGCTGAGACT
 CTGTTTTGTGGGTTTTCTGTCTACGGAAGAACAATTGCCCCCCATCGAGGCAGGGTAAAA
 AGCCAGTCCATATTTATCTAGTACAAGGGTCCAAGAACGGAGTCTGAGTGGGACACCAA
 CAACCTGGGAAGGAAAGCAATGTGGAACGAGATCTGCGATCTG
- 4. TACGAGCTCCGAATCTGATAATAGTTTGGC TTTTAGCTTTTCTTACCCTGAGATTTT TTGATATGTTGAATATGGGTAGATAACCTCACAGTTGAATGGTATTGTTTTCAGGGGAA TTTATACATTACTGAGACATGTGTGTCATGGGTGCACAAGCTTCCTGGGCTATGTCTCT AGGATTCGTGCATCAGGGGCAGGGTGAGTTTTGACAAAGATTTGATGTCACAAATCCTGCCTTAGATCTGTT