A

Irx6 genomic locus

Irx6 targeted allele

Southern blot-Xba |digest
$\mathrm{WT}=10 \mathrm{~kb}$ fragment
$\mathrm{KO}=13.9 \mathrm{~kb}$ fragment

Fig. S1. Targeted disruption of Irx6. A $5.5 \mathrm{~kb} \mathrm{NcoI/HindIII}$ Irx6 fragment was cloned as the 5^{\prime} arm of the targeting construct upstream of the lacZ gene. The targeting construct contained a neomycin resistance cassette and a thymidine kinase cassette ($P g k$ -Neo-SV40 polyA) that was cloned in reverse orientation with respect to the targeting vector. A 2 kb PvuII/NotI Irx6 fragment was cloned as the 3^{\prime} arm of the targeting construct. Following homologous recombination, a mutated Irx6 allele was generated that had lost all of exon 1 and part of exon 2. (A) Construct used. (B) Southern blot of the targeted ES cell DNA, clone B3. Southern blot analysis for homologous recombinants was carried out following an XbaI digest using a 2 kb HindIII fragment probe 5' to the left arm of the targeting construct. The wild-type band size is 8.5 kb and the targeted band size is 10 kb . Two positive clones were used to give rise to the knock-in founder mice. (C) PCR showing wild-type, homozygous ($\operatorname{Irx} 6^{\text {lacZIacz }}$) and heterozygous ($\operatorname{Irx} 6^{+1 a c z}$) mice. $\operatorname{Irx} 6^{+/ / a c Z}$ heterozygous crosses produced offspring ($+/+,+/$ lacZ, lacZ/lacZ) with the expected Mendelian ratio and IrxblacZlacZ mice were able to reproduce successfully. Both developing and adult $\operatorname{Irx} 6^{\text {lacZIacz }}$ mice were indistinguishable from their wild-type littermates in terms of size and general behavior. (D) In situ hybridization (upper) for Irx6 expression in the P0 Irx6 ${ }^{+/ \text {lacz }}$ mouse retina and X-gal staining (lower) in an adjacent section showing the overlapping expression pattern between endogenous Irx6 expression and expression of the Irx6:ßgal reporter. The riboprobe corresponds to the full-length cDNA for Irx6. The protocol for in situ hybridization has been previously described (Chow et al., 2001), except the hybridization temperature was $56^{\circ} \mathrm{C}$.

Fig. S2. The Irx6: $\beta \mathrm{gal}$ reporter is expressed in a subset of ganglion cells, but is not expressed in type 4 bipolar cells. (A$\mathbf{A}^{\prime \prime}$) The Irx6: β gal reporter co-immunolabels with the ganglion cell marker Brn3b in a subset of cells in the adult $\operatorname{Irx} 6^{+/ l a c Z}$ mouse retina. The dashed lines indicate the boundary of the ganglion cell layer. The outlined cell is both positive for Brn3b and Irx6: β gal. (B-B") In the adult $\operatorname{Irx} 6^{+/ 1 a c Z}$ mouse retina, the type 4 bipolar cell marker calsenilin does not co-immunolabel with Irx6: β gal, indicating that Irx6 is not expressed in type 4 OFF bipolar cells. The arrow indicates a cell that is positive for Irx6: $\beta \mathrm{gal}$, but not for calsenilin; the arrowhead indicates a calsenilin-positive cell that is negative for $\operatorname{Irx} 6: \beta \mathrm{gal}$.

Fig. S3. Irx6: β gal is strongly expressed in the $\operatorname{Irx} \boldsymbol{6}^{\text {lacZ/acZ }}$ mouse and can be visualized in the inner plexiform layer. Irx6: $\beta \mathrm{gal}$ (A) co-immunolabels with Synaptotagmin 2 (Syt2) (B,C) in both the upper and lower zones of the inner plexiform region, corresponding to the OFF and ON projecting regions. Other ON bipolar cells (type 5 or rod bipolar cells) do not show expression of the Irx6: $\beta \mathrm{gal}$ reporter as all of the Cabp5-expressing cells that co-immunolabeled with Irx6: $\beta \mathrm{gal}$ also expressed Hen4. Scale bar $10 \mu \mathrm{~m}$.

 Arrowheads indicate Irx6: β gal-positive cells that do not express Hen4 whereas arrows indicate Irx6: β gal-positive cells that express Hcn4. Bhlhb5 immunolabeling is present in some of the Irx6:ßgal cells that do not co-immunolabel with Hen4 in the Irx ${ }^{\text {lacZlacz }} ; V_{S x} 1^{+ \text {+AltB5 }}$ retina.

Fig. S5. Ganglion cell projections to the brain are grossly normal in Irxf ${ }^{\text {lacZ/acZ }}$ mice. As $\operatorname{Irx6}$ is expressed in a subset of retinal ganglion cells (supplementary material Fig. S2), we investigated whether Irx6 is required for ganglion cell axon outgrowth, migration and targeting. Cholera toxin subunit B coupled to either Alexa Fluor 488 (left eye) or Alexa Fluor 555 (right eye) (Invitrogen), was injected into the intravitreal space of the eye ($2 \mu \mathrm{l}, 5 \mu \mathrm{~g} / \mu \mathrm{l}$ per eye) using a 33G Hamilton needle at 2 months of age. After 24 hours, mice were euthanized and brain tissue fixed for 10 minutes with 4% paraformaldehyde in phosphate-buffered saline (PBS) by trans-cardial perfusion, followed by overnight fixation of tissue in 4% paraformaldehyde in PBS at $4^{\circ} \mathrm{C}$. (A,B) The optic nerves carrying different dyes branched out contralaterally at the optical chiasm, with a subset of nerve fibers projecting ipsilaterally with no difference between $\operatorname{Irx} 6^{+/ a c Z}(\mathrm{~A})$ and $\operatorname{Irx} 6^{\operatorname{lacZIacZ}}(\mathrm{B})$ mice. (C,D) In the lateral geniculate nucleus, nerves projecting contralaterally (red) and ipsilaterally (green) occupy distinct regions in a manner that was indistinguishable between control $\operatorname{Irx} 6^{+/ a c Z}(\mathrm{C})$ and $\operatorname{Ir} x 6^{\text {lacZlacZ }}(\mathrm{D})$ mice. (\mathbf{E}, \mathbf{F}) Similarly, in the superior colliculus, where most projections were formed contralaterally, no difference was observed between control $\operatorname{Irx} 6^{+/ a c Z}$ (E) and $\operatorname{Irx} G^{\operatorname{lacZ} / a c Z}$ (F) mice. Scale bar: $100 \mu \mathrm{~m}$ in A,B,E,F; $200 \mu \mathrm{~m}$ in C,D.

Table S1. Antibody dilutions and sources

Antigen	Antiserum	Source	Working dilution ${ }^{5}$
Vsx1	Rabbit anti-Vsx1	R. L. Chow, University of Victoria, Victoria, BC	1:100
Recoverin	Rabbit anti-recoverin ${ }^{1}$	Millipore/Chemicon (AB5585)	1:500
NK3R	1. Rabbit anti-NK3R ${ }^{2}$ 2. Rabbit anti-NK3R ${ }^{3}$	A. Hirano, Department of Neurobiology, Los Angeles, CA Calbiochem (480739)	$\begin{aligned} & 1: 500 \\ & 1: 5000 \end{aligned}$
Cabp5	Rabbit anti-Cabp5	F. Haeseleer, Department of Ophthalmology, Seattle, WA	1:500
PKC α	Rabbit anti-PKC α	Sigma (P4334)	1:20,000
Calbindin	Mouse anti-calbindin	Sigma (C2724)	1:500
Chx10	1. Rabbit anti-Chx10 2. Sheep anti-Chx10	R. R. McInnes, Hospital for Sick Children, Toronto Exalpha (X1180P)	$\begin{aligned} & 1: 500 \\ & 1: 1000 \end{aligned}$
β-Gal	1. Chicken anti- β-Gal ${ }^{4}$ 2. Rabbit anti- $\beta-\mathrm{Gal}$ 3. Mouse anti- β-Gal	Abcam (ab9361) Cappel (55976), MP Biomedicals Sigma (G8021)	$\begin{aligned} & 1: 300 / 1: 12,500 \\ & 1: 5000 \\ & 1: 500 \end{aligned}$
Bhlhb5	Goat anti- $\beta 3$ (E17)	Santa Cruz (sc-6045)	1:1000
HCN4	1. Guinea pig anti-HCN4 γ 2. Rat anti-HCN4 γ PG2-1A4	F. Müller, Forschungszentrum, Jülich, Germany	$\begin{aligned} & 1: 500 \\ & 1: 1 \end{aligned}$
Irx5	Rabbit anti-Irx5	C. C. Hui, Hospital for Sick Children, Toronto	1:50
PKA RII β	Mouse anti-PKA RII β	BD science (612550)	1:3000
Calretinin	Goat anti-calretinin	Chemicon (AB1559)	1:2500
Brn3b	Goat anti-Brn3b	Santa Cruz (sc-31989)	1:100
Syntaxin	Mouse anti-syntaxin	Sigma (S0664)	1:500
Calsenilin	Mouse anti-calsenilin	W. Wasco, Harvard Medical School, Charlestown, MA clone 40A5	1:2000
Synaptotagmin	Mouse anti-Syt2/ZNP-1	Zebrafish International Resource Center	1:250

${ }^{1}$ Labeling for recoverin was carried out using 0.1\% Triton X-100 in place of Tween 20.
${ }^{2}$ Immunolabeling for NK3R was done in the absence of horse serum.
${ }^{3}$ Mice were perfused with 4% PFA prior to enucleation and the retina was then left in 4% PFA for 20 minutes at room temperature.
${ }^{4}$ Chicken anti- β-gal shows some non-specific labeling of amacrine cells in this system
${ }^{5}$ Antibodies were diluted in PBS containing 1% horse serum and 0.1% Tween 20, except as noted above.

Table S2. Vectors used

Vector	Host	Reference to sequence number below ${ }^{\ddagger}$ or vector source	Putative Irx6-binding site (IBS)*
pRecoverin_1461.luc	pGL4.26 $K p n \mathrm{I}$ and HindIII sites	1	ACATGT
pVsx1_9130.luc	$\begin{gathered} \text { pGL3P } \\ S a c \mathrm{I} \text { and } B g l \mathrm{II} \\ \text { sites } \end{gathered}$	2	ACACGTGT
pVsx1_3377.luc	$\begin{gathered} \text { pGL3P } \\ S a c \mathrm{I} \text { and } B g l \mathrm{II} \\ \text { sites } \\ \hline \end{gathered}$	3	ACACGTGT
pVsx1_2232.luc	$\begin{gathered} \text { pGL3P } \\ S a c \mathrm{I} \text { and } B g l \mathrm{II} \\ \text { sites } \end{gathered}$	4	ACATGTGT
pNK3R_1398.luc	pGL3P $S a c \mathrm{I}$ and $B g l \mathrm{II}$ sites	5	ACAGGTGT
pIrx6	$\begin{gathered} \hline \text { pBSK-EF1_ } \\ S f l \mathrm{I} \text { and } X b a \mathrm{I} \\ \text { sites } \\ \hline \end{gathered}$	C. C. Hui, Hospital for Sick Children, Toronto	
pIrx5	$\begin{gathered} \hline \text { pBSK-EF1_ } \\ S f I \mathrm{I} \text { and } X b a \mathrm{I} \\ \text { sites } \\ \hline \end{gathered}$	C. C. Hui, Hospital for Sick Children, Toronto	
Renilla	pRL-TK	Promega	
Luciferase with mini-promoter	pGL4.26	Promega	
Luciferase with SV40 promoter	pGL3P	Promega	

*Putative IBS identified using FIMO (http://meme.nbcr.net/meme/intro.html).
${ }^{\ddagger}$ Appropriate restriction enzyme sites have been integrated into the primers and are found in the sequence below (primers are italicized and putative IBS is in bold).

1. TGGTGAACAGTGCTGTGGATGTGCAAGCCAATCAAACCATTTTCCTCCTCAAGTTGC TTTTGCTCACGGTGCTCCACGGCAGCAATAGAAACCCTAACTAACACAAGCAGAGAACT AAGGCAGCCCATTCCTAGGCAGAAACGCAGGGGAAGATGGGAATACGTATGTAGTTCCT GgGGATGCCTTGAAAAAGAGAAATCCCAGTGTGTAAGGTCAGTATTGTATGGAGTACCA GGTAATAGGGTGGCATCAGAAGGAAGGGGTGGGGTTTGCTTTCTAAAACTTACTATACA CCCCAACAGTCCTCTAGTCTCTAAGGAAATGGCAGGGGCAGCTATGAATAACACATAAA CACAACACCAAAATGTATCTAAAATTACAACCCCTGAGACTACACTCAAATGACACATT CACCATTGCCAATGTGACAGGCCTCTCTGTCTCTTGCCACCTGCCTGGTCTGCCTGCTC ACTCCTCCTAGGCAGCTTTATTCTACCTTTGTTACTTAGGAACAATAACACCAGGGCTT AACTTATAATAGAGACTCACAACGGACCCAGGTCCCCATGACCCAGTCTTGCCTTGAAC

ACACCATAAGTAAACATGTATAGAGCGCATCCAACACACTGAACTTTGTAACTCAGGCT TACCCACCTCTGTCCGCTCAGAACACTCACGTTGGACAAAATCCCGGAGAAATAATCTC CTGTGGTTGTATAAGGCATGTTGTGGTACTGTGGTAAAGTCAAAACATTTAAACTGTGG TAGATCAAAACATTTAGGTGAGCCTATAGTGAGTCTGGAGCCGTGTTTGTGTGTGTGTG TGTGTGTGTTCAGCACCTTTTCCAGCCAGTTTGAGCTATTTTGTACTGTTCTGGCAGTG GAGATAACAACCCACAGAACACAATCTTTCCCTATCTGGCACTTCCATTCTGGCAGACA GTTTGGGGTTTCCCAGCAGCGGTGAGGAAGGAGCCATCAGAGAGTGATGGATAAAAGGT CTTGCTGAGAAGGTGAAGTGTCTAGGCCCAAATGTGACTGGGGGAGGATTAGAAAAACT CCCATGCAGTGTAGGTTAAGTGGTAGGGCTGCCTTTAGACCCTAAGCTCCCAAACTCCT GCACTATAAGGTCCCATGGGTGCCCCTCAGATGGGGAGACAAACAGCAAGCAGTGTGGC TCTTCGGGGGCTTAAATGCCGAGGATGCTTGGTTCAAGGGTCCCTCCTTGTTCCTTTCT TCTCAACAAGCACAGGAAAGGTAAGTGGCTGCTCTTGGCTCTTTATTTTAATCTCAGAA GGGTGCCCCTCCTCCCTCCAAGGACTGGGCAGACCTGGCCGCAAATCCCCCCTAATCCA TCAGCACCTGGGTC
***a region containing more than 44% GT repeat and 20% TA repeat has been deleted from the above sequence.
2. TACGAGCTCTTCCATAATCTGTCCATTGGTGAGAGTGGGGTGTTGAAATCTCCCACT ATTATTATGTAATGTTCAATGTGTGTTTTGAGCTTTAGTAATGTTTCTTTTACACGTGT GGGTGCCCTTGCCTATGGGGCATACATGTTTAGAATTGAGAATTCAATTTGGATTTTTC GTATGGTGGGTATGAATAAGATTTCCCATCTCTTTTGATAACTTTTGGTTGAAAGTCTA TTTTACTGGATATTAGAATGGCTACTTCAGCTTGTTTCTAGATCTGTT
3. TACGAGCTCAGTACTTGACGATGAGGTCCCTGGACACAAAGCTGGAGTCAGTGTCTG AGTATAGATTCATGGGAGGGTCGGATCTCAGAACAGAGGGATAGCAGAGAAGCAGGAGA AGGAGCCACGCAAAGTTGCCACTGCCTTATCCACGAATGGGGAGGAACTGGAAACAGAC ACTGCAATTGTCCTCCTTGAAACACGTGTGTGACCTCTTAGTAACTCAGTGCTGAGACT CTGTTTTGTGGGTTTTCTGTCTACGGAAGAACAATTGCCCCCATCGAGGCAGGGTAAAA AGCCAGTCCATATTTATCTAGTACAAGGGTCCAAGAACGGAGTCTGAGTGGGACACCAA CAACCTGGGAAGGAGAAAGCAATGTGGAACGAGATCTGCGATCTG
4. TACGAGCTCCGAATCTGATAATAGTTTGGCTTTTAGCTTTTCTTACCCTGAGATTTT TTGATATGTTGAATATGGGTAGATAACCTCACAGTTGAATGGTATTGTTTTCAGGGGAA TTTATACATTACTGAGACATGTGTGTCATGGGTGCACAAGCTTCCTGGGCTATGTCTCT AGGATTCGTGCATCAGGGCAGGGTGAGTTTTGACAAAGATTTGATGTCACAAATCCTGC CTTAGATCTGTT
5. TACGAGCTCCAACAGGCAGTAATGATCACATATTTATTTGATAAAAAAAAATGTGTC TTTTTGAAATGCATTCTGCCTAATAGCATTGATTTCTTTTTCCACTTTGTAAATAACTC CACCAAAATCGTGGATGTGACATCACAGGTGTTAGTTTTCTACTGACATGTGGTACTTA CTACATTATTAGCAATTCCTGAAAGCCTGTTTTGTTGCCTGAAAGACCACTTCTCTATC GTCATCGCCACCTTGATACCCAGATCCCAAGTGAAAGGTATAATTACTTCTTCTACCGA TCTGAATATCGTTATCTAGATCTGTT

