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S.1 Phase plane analysis

To study the dynamic behaviour of the simpli�ed models we use the so-called method of phase plane analysis
(�gure S.1, table S.1) . This method can be applied if the model consists of two variables (P and A at membrane
segment level) or when the model has been further simpli�ed to two variables (P0 and P1 at single cell level,
when auxin dynamics are assumed to be in quasi steady state). The major idea behind the method of phase plane
analysis is to depict the dynamics of the two model variables in a 2-dimensional plane (the phase plane).

Consider a general model with two variables x and y, whose dynamics are typically dependent on each other
(e.g. P and A or P0 and P1). For this model system we can draw a phase plane with x on the horizontal and y on
the vertical axis. Each point in this phase plane represents a potential state of the model system, its coordinates
representing the values of x and y in this state. In this phase plane we can depict the dynamics of the variables at
each point, using horizontal arrows to depict increases (�) and decreases (�) in x and vertical arrows to depict
increases (^) and decreases (_) in y. Together these arrows constitute a vector �eld (note that we can determine
the dynamics of x and y in a point simply from the values of dxdt and dy

dt in that point).
A phase plane contains two (sets of) equilibrium lines, also named isoclines, for which one of the variables

does not change in time. These lines are obtained by setting the equation dx
dt or dydt , respectively, equal to 0. The

vector �eld for each variable switches sign when crossing the respective equilibrium line. Change of this variable is
either positive (growth) below or to the left of the equilibrium line and negative (decrease) above or to the right,
or vice versa. When these equilibrium lines intersect, both variables are in steady state and an equilibrium occurs.
Equilibria can be stable (�gure S.1A) or unstable (�gure S.1B). When a system that is in a stable equilibrium is
perturbed, it will move back to this equilibrium. When the equilibrium is unstable, a perturbation will cause the
system to move away from it. Stability of equilibria can often be determined directly by looking at the vector �eld:
if all arrows point towards the equilibrium it is stable, if one or more arrows point away from the equilibrium it is
unstable.

A crucial point in our analysis is the distinction between systems with one and systems with multiple stable
states. In systems with a single stable equilibrium the system's state will in the long run converge to that
equilibrium. In contrast, in bistable system where two stable equilibria are separated by an unstable equilibrium
the initial conditions of the system determine to which of the two stable equilibria the system converges (�gure
S.1C).

S.1.1 Di�erence between single equilibrium and bistable system

Figure S.2 illustrates the di�erences in behaviour at the single cell level between a system with one stable equilibrium
and a bistable system. In the absence of transient perturbations or an external gradient (�g S.2A and D), the
system can be in a symmetric equilibrium in which P0 = P1. When transiently perturbed from this symmetric

1



Table S.1: Summary of terms
term meaning

system one or more coupled variables for which a di�erential equation
describes the change over time

phase plane (2D) all possible combinations of x and y values i.e. all possible states of
the system

vector �eld representation of direction of change for each variable at each
position in the phase plane

equilibrium line, isocline x and y values for which one of the variables does not change
equilibrium point in which two equilibrium lines intersect and both variables do

not change
stable equilibrium, attractor equilibrium to which a system converges
unstable equilibrium equilibrium from which a system diverges when perturbed
bistability situation in which a system has two stable equilibria, separated by

an unstable one; or more generally a situation in which a system
has an unstable equilibrium separating two distinct long term
attractors of the system

PAT model interpretation

bistability (membrane
segment)

a membrane segment either has high or low concentration of PIN
proteins

polarity (cell) a single cell contains at least one membrane segment with high PIN
concentration and at least one with low PIN concentration

gradient-driven pattern
formation (tissue)

cells within the tissue are not polar, constant sources and sinks
keep patterns intact

self-organisation (tissue) externally applied biases like sources and sinks are not required to
maintain a pattern

polarity-driven
self-organisation (tissue)

self-organisation results from the ability of single cells to polarise
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Figure S.1: Examples of phase planes of x and y. Two arbitrary straight equilibrium lines intersect once, providing
one equilibrium (A and B). Depending on the equations (not shown) the vector �eld can point toward (A) or away
(B) from the equilibrium, i.e. the equilibrium is either stable or unstable. C: example of a bistable system. The
two equilibrium lines intersect three times. The vector �eld shows that the outer two equilibria are stable whereas
the middle one is unstable.

equilibrium by increasing P0 (red dots in �g S.2B and E), the single equilibrium system will eventually return to
its symmetrical equilibrium (�g S.2B) whereas the bistable system will leave its unstable symmetrical equilibrium
and converge to the stable polar equilibrium in which P0 is high and P1 is low (�g S.2E). Figure C shows in red
how the phase plane of the single equilibrium model changes when the cell lies in an external auxin gradient. Due
to the gradient the membranes of the cells now experience di�erent auxin concentrations, causing P0 and P1 to
become di�erent from each other such that the single stable equilibrium is no longer symmetrical (P0 > P1, or
vice versa in case of the opposite gradient). Figure F shows in red how the phase plane changes for the bistable
model when the cell lies in an auxin gradient. We see that the region of the phase plane for which the system
will converge to the P0 � P1 polar state (boundary of which is given by the dotted line) becomes larger and now
includes the symmetrical initial conditions. Now, even when the cell is initiated in a uniform, symmetrical, state,
it will polarise. Note that the polar stable equilibria in �g S.2D-F are fundamentally di�erent from the somewhat
polarised state in C. In the former case, the system is strictly polar, whereas the di�erent concentrations of P0

and P1 obtained in the latter are a direct result of the external auxin gradient.
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Figure S.2: Phase planes of single equilibrium (A-C) and bistable (D-F) single cell models and reactions to
temporal perturbations or a global gradient. A and D: no perturbations or gradient present. B and E: phase
plane after perturbation by increasing the level of P0. C and F: change of phase plane when a constant global
gradient is present. Solid equilibrium lines are for P0, dotted equilibrium lines are for P1. The equilibrium to which
a system converges is markes with a large red circle. Red dots in B and E are initial conditions in which P0 is
slightly increased. In C and F, altered equilibrium lines and equilibria are marked in red.

S.2 Mathematical framework to study PAT models

S.2.1 Membrane segment model analysis

The caricature membrane segment model consists of an equation for the PIN level at the membrane segment (P )
and and equation for auxin in the adjoining neighbouring cell (A). All other PIN and auxin concentrations are
assumed to be constant. We use these two variables for all discussed models, but take into account the speci�c
mathematical details of individual models. All phase planes are drawn with P on the y- and A on the x-axis.
However, in some cases it is much easier to write A as a function of P .

The default auxin equation is given by:

dA

dt
= p+ ipas + ipinP − eA− dA (S.1)

p and d are the production and decay rates respectively. ipas is the passive and ipinP the active rate of in�ux
over the membrane of interest and into the neighbouring cell. E�ux occurs at rate e. A number of models takes
into account saturation of auxin transport through the PIN proteins. In our caricature membrane segment model,
this translates into:

dA

dt
= p+ ipas + ipinP − (epas +

epin
hpin +A

)A− dA (S.2)

Note that the ipinP term is not a�ected, since auxin concentration in the cell to which the membrane segment
belongs is assumed to be constant. Instead, we split up the e�ux from the neighbouring cell of interest into
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a passive (epas) and active e�ux (epin), the latter of which saturates with the auxin concentration and is half

maximum when A = h.
The auxin equilibrium line is obtained by setting dA

dt = 0. The default auxin equilibrium line is given by (eq 1
in box 1 in the main text):

P =
(e+ d)A− p− ipas

ipin
(S.3)

If PIN-mediated e�ux is saturated, the auxin equilibrium line is given by:

P =
(epas +

epin
hpin+A

+ d)A− p− ipas
ipin

(S.4)

Ignoring auxin feedback on PIN dynamics for a moment, the equation for PIN dynamics can be written as (eq
3 in box 1 in the main text):

dP

dt
= kon − koffP (S.5)

Depending on the type of feedback of auxin on PIN dynamics, either exocytosis rate kon or endocytosis rate
koff depend on auxin �ux or concentration.

The assumption of a limiting PIN pool a�ects PIN dynamics as the membrane segment of interest depletes
the pool and thus inhibits its own availability of PINs. This alters the PIN equation to:

dP

dt
= kon(Ptot − P )− koffP (S.6)

In which Ptot is the total amount of PINs the cell contains. In some models the cytosolic PIN pool is modeled
dynamically.

S.2.2 Single cell model analysis

Our single cell model consists of one cell containing PIN levels on two membrane segments (P0 and P1) and auxin
levels in the two corresponding neighbouring cells (A0 and A1). As for the membrane segment model, all other
PIN and auxin concentrations are assumed to be constant. Equations for auxin are the same as for the membrane
segment model (eq S.1 or S.2) and the same is true for the PIN equation if there is no limiting PIN pool (equation
S.5). If there is a PIN pool, it is now depleted by both membrane segments:

dPi
dt

= kon(Ptot −
∑
n

Pi)− koffPi with i = 0, 1 (S.7)

with n being the total number of membrane segments belonging to one cell. In order to simplify this 4 variable
model into a 2 variable model that we can analyse using the phase plane method, we assume that auxin dynamics
are fast and hence are in steady state. This allows us to use a so-called quasi steady state (QSS) assumption for
auxin dynamics, setting the auxin di�erential equations to 0. For the simplest auxin equation (eq S.1) we then
�nd:

Ai =
p+ ipas + ipinPi

e+ d
(S.8)

Substituting equation S.8 in the PIN equations now leaves us with a 2-variable system that we can study with
phase plane analysis. Hence, most single cell phase planes will have P1 on the y- and P0 on the x-axis. In some
cases, however, the authors have already implemented a QSS for the PIN equations and we draw a phase plane
for A1 and A0 instead.

5



S.2.3 Concentration, �ux and the shape of the PIN equilibrium line

To determine the precise shape of the PIN equilibrium lines in both the membrane segment and single cell models
we need to �ll in the feedback of auxin on PIN cycling dynamics. Feedback of auxin on membrane PIN levels
occurs in most models through either auxin concentrations in neighbouring cells or through auxin �uxes across the
membrane.

S.2.3.1 Concentration-based feedback

First let us consider a few elementary shapes for the function describing feedback of auxin concentration on PIN
cycling. We use the example of feedback through kon. Feedback on koff will give similar results. A number of
ways in which kon might depend on auxin concentration in the neighbouring cell are: linear (kon = konb

+konf
A),

superlinear (e,g, quadratic, kon = konb
+ konf

A2) or saturating with A (kon = konb
+

konb
An

hn
A+An ). In all cases, konb

is the basal exocytosis rate, konf
is the extra exocytosis rate that depends on auxin. In case of the saturating

feedback hA is the auxin concentration for which kon is half maximum. If n > 1, the saturation is sigmoid.
Substituting these into the PIN equation without a limiting PIN pool (eq S.5) and putting it to zero would

produce the following PIN equilibrium lines (all phase planes are shown in �g S.3 with a reference to the equation
that produces the PIN equilibrium line):

1: linear feedback and unlimiting PIN pool:

P =
konb

+ konf
A

koff
(Conc.1.a)

2: quadratic feedback and unlimiting PIN pool:

P =
konb

+ konf
A2

koff
(Conc.2.a)

3: saturating feedback and unlimiting PIN pool:

P =
konb

koff
+

konf
An

koff (hnA +An)
(Conc.3.a)

If instead the PIN pool is limiting (eq S.6), the PIN equilibrium lines become:
4: linear feedback and limiting PIN pool:

P =
Ptot(konb

+ konf
A)

koff + konb
+ konf

A
(Conc.1.b)

5: quadratic feedback and limiting PIN pool:

P =
Ptot(konb

+ konf
A2)

koff + konb
+ konf

A2
(Conc.2.b)

6: saturating feedback and limiting PIN pool:

P =
Ptot(konb

hnA + (konb
+ konf

)An)

((konb
+ koff )hnA + (konb

+ konf
+ koff )An)

(Conc.3.b)

Hence, the addition of a limiting PIN pool e�ectively alters the linear PIN equilibrium (eq Conc.1.a) line into
a line that saturates with auxin (eq Conc.1.b) and the quadratic PIN equilibrium (eq Conc.2.a) line into a sigmoid
one (eq Conc.2.b). If the feedback was already saturating, the limiting PIN pool changes the exact position, but
not the shape of the PIN equilibrium line (compare eq Conc.3.a and eq Conc.3.b).
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S.2.3.2 Flux-based feedback

In order to �ll in the feedback of auxin �ux on PIN cycling we �rst need to formulate an expression for across
membrane auxin �ux, which we will derive here. Both at the membrane segment and single cell level we study PIN
concentrations at a membrane segment and the auxin concentration in the corresponding neighbouring cell. Flux
is regarded with respect to the membrane segment(s) of interest and is positive in case of net e�ux and negative
in case of net in�ux. Hence the equation for (non-saturating) �ux (F ) is:

F = ipas + ipinP − eA (S.9)

Note that we use the same nomenclature as for the auxin in the neighbouring cell (ipas and iPIN are in�uxes
into the neighbouring cell and e�uxes over the membrane segment of interest, e is e�ux from the neighbouring
cell and in�ux over the membrane segment of interest). Similarly, since the focus is on the membrane segment
(with PIN level P ) and its neighbouring cell (with auxin level A), the auxin in the cell to which the membrane
segment belongs is assumed to be constant, and is incorporated in ipas and ipin. Most �ux-based models assume
that only net e�ux feeds back on PIN localisation, using a Heaviside function θ(F ) to switch feedback on if �ux
is positive and o� if �ux is negative.

Now let us consider the same elementary shapes for �ux feedback functions and the PIN equilibrium lines they
produce. It is important to notice that when calculating the �ux, both P and A are taken into account. Hence,
if �ux feeds back on PIN cycling, the PIN concentration feeds back on itself.

1: linear feedback (kon = konb
+ konf

θ(F )F ) and unlimiting PIN pool:

P =


konb

koff
if F ≤ 0

konf
(eA−ipas)−konb

konf
ipin−koff

if F > 0
(Flux.1.a)

2: quadratic feedback (kon = konb
+ konf

θ(F )F 2) and unlimiting PIN pool:

P =


konb

koff
if F ≤ 0

2konf
ipin(eA−ipas)+koff+

√
4konf

koff ipin(eA−ipas)+k2off−4konf
i2pinkonb

2konf
i2pin

if F > 0
(Flux.2.a)

3: saturating feedback (kon = konb
+ konf

θ(F ) Fn

hn
F+Fn ) and unlimiting PIN pool:

P =
konb

koff
if F ≤ 0

A = 1
e

(
ipas + ipinP + n

√
hn
F (koffP−konb

)

koffP−konb
−konf

)
if F > 0

(Flux.3.a)

And, as well, with limiting PIN pool:
4: linear feedback and limiting PIN pool:P =

konb
Ptot

koff+konb
if F ≤ 0

A =
konf

(ipasP+ipinP
2−ipinPtotP−ipasPtot)−konb

(Ptot−P )+koffP

konf
e(P−Ptot)

if F > 0
(Flux.1.b)

5: quadratic feedback and limiting PIN pool:P =
konb

Ptot

koff+konb
if F ≤ 0

A =
konf

((ipas+ipinP )(P−Ptot)+
√
−konf

((P−Ptot)(konb
P+koffP−konb

Ptot))

konf
(P−Ptot)e

if F > 0
(Flux.2.b)

6: saturating feedback and limiting PIN pool:
P =

konb
Ptot

koff+konb
if F ≤ 0

A = 1
e

(
ipas + ipinP − n

√
hn
F (konb

P+koffP−konb
Ptot)

konb
(Ptot−P )+konf

(Ptot−P )−koffP

)
if F > 0

(Flux.3.b)
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In all cases, the Heaviside function θ(F ) causes a sharp switch in the PIN equilibrium line, which makes it
inherently non-linear. The limiting PIN pool causes the PIN equilibrium line to curve back, such that it becomes
a sigmoid-like line.

S.3 Membrane segment variants

Here we present an overview of distinct model behaviours at the membrane segment level for all possible combi-
nations of auxin and PIN dynamics. At the membrane segment we can distinguish between systems with one, two
(semi-bistable) or three (bistable) equilibria. Di�erent combinations of auxin and PIN equilibrium lines can lead
to one of these cases:

MS.I: straight A equilibrium line and (sub)linear P equilibrium line: one equilibrium If the straight A
equilibrium line that results from our default auxin equation S.1 is combined with a PIN equilibrium line that
is linear or saturates with n = 1 (eq Conc.1.a, Conc.1.b, Conc.3.a and Conc.3.b), there can be only one stable
equilibrium, and thus no bistability (�g S.3A) independent of whether or not a limiting PIN pool is assumed.

MS.II: straight A equilibrium line and superlinear P equilibrium line: two equilibria When the auxin
equilibrium line is a straight line (eq S.3 as follows from the auxin eq S.1), bistability can occur when the PIN
equilibrium line is superlinear and non-saturating (eq Conc.2.a, Flux.1.a and Flux.2.a). There are two equilibria.
The lower equilibrium is stable and the upper unstable. Above the upper equilibrium there is a region of unlimited
increase of PIN levels. This situation results in a bistable system, since it has two regions of distinctly di�erent
behaviour, even though there is only one stable equilibrium (�g S.3B) and an unlimiting PIN pool is assumed.

MS.III: straight A equilibrium line and sigmoid P equilibrium line: three equilibria A straight auxin
equilibrium line can intersect thrice with a sigmoid PIN equilibrium line (eq Conc.3.a with n = 2, Conc.2.b,
Conc.3.b with n = 2, Flux.1.b, Flux.2.b, Flux.3.a and Flux.3.b) (�g S.3C). The outer two equilibria are stable
and the middle one is unstable. Hence, bistability arises from a sigmoid saturating feedback or a non-linear
feedback combined with a limiting PIN pool.

MS.IV: both A and P equilibrium lines are non-linear: two or three equilibria Non-linearity in the auxin
equilibrium line (eq S.4) can introduce bistability when combined with a PIN equilibrium line that previously would
not give bistability (eq Conc.3.a with n = 1, Conc.1.b, Conc.3.b with n = 1) (�g S.3D).

S.4 Single cell variants

At the cell level we are interested in whether the system can display polar behaviour. For this the model needs
to have two stable polar equilibria, one with high PIN levels on one membrane segment and low PIN levels on
the other and one vice versa. The di�erent possible combinations of model assumptions produce a total of three
di�erent scenarios, for two of which cell polarity can occur.

SC.I: non-bistable membrane segments combined with a limiting PIN pool: no polarity As an example
of this scenario, consider the concentration-based, linear, feedback that is not able to give membrane bistability.
Combining this feedback with a limiting PIN pool gives the following PIN equations for P0 and P1:

dPi
dt

= (konb
+ konf

Ai)(Ptot − Pi − Pj)− koffPi with i = 0, 1 and j = 1, 0 (S.10)

Substituting the auxin QSS, to reduce the system to two variables gives us the full PIN equation:

dPi
dt

=

(
konb

+ konf

(
p+ ipas + ipinPi

e+ d

))
(Ptot − Pi − Pj)− koffPi with i = 0, 1 and j = 1, 0 (S.11)
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Figure S.3: Overview of the di�erent membrane segment variants with corresponding PIN equilibrium lines and
references to PAT models with (similar) auxin and PIN dynamics. Dashed lines: P equilibrium lines. Solid lines: A
equilibrium lines. Closed circles: unstable equilibria. Open circles: stable equilibria. Arrows represent the direction
of dynamics.
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The resulting equilibrium lines are shown in �g S.4A Although P0 and P1 are interdependent, their equilibrium
lines are only able to intersect once in a stable equilibrium in which (given no external bias) P0 = P1. Hence, no
cell polarity occurs.

SC.II: bistability at the membrane segment level combined with a limiting PIN pool: polarity (+ rest
state) As an example of this scenario, consider the concentration-based, quadratic, feedback as in equation
Conc.2.b. Implementing this feedback at the single cell level gives us the following PIN equations for P0 and P1:

dPi
dt

= (konb
+ konf

A2
i )(Ptot − Pi − Pj)− koffPi with i = 0, 1 and j = 1, 0 (S.12)

Substituting the auxin QSS gives us the full PIN equation:

dPi
dt

=

(
konb

+ konf

(
p+ ipas + ipinPi

e+ d

)
2

)
(Ptot − Pi − Pj)− koffPi with i = 0, 1 and j = 1, 0 (S.13)

The resulting equilibrium lines can intersect three times (�g S.4B). Two of these equilibria are stable and
asymmetrical (P0 > P1 and P0 < P1), one is unstable and symmetrical (P0 ∼ P1). If a model contains only these
three equilibria it polarises automatically due to noise.

Additionally, a third stable equilibrium, and corresponding unstable equilibria, might occur. This happens in
case feedback is concentration-based and sigmoid (eq Conc.3.b with n = 2) and in case of �ux-based feedback
(due to the Heaviside function). This third equilibrium occurs for P0 = P1 and represents an apolar rest state.
The system has to be su�ciently perturbed from this state in order to become polar.

SC.III: non-bistable membrane segments combined with an unlimiting PIN pool: no polarity As an
example, if the linear concentration-based feedback (eq Conc.1.a) is combined with an unlimiting PIN pool, the
PIN equations become:

dPi
dt

= konb
+ konf

Ai − koffPi with i = 0, 1 (S.14)

Implementing the QSS for Ai gives us the full PIN equations:

dPi
dt

= konb
+ konf

(
p+ ipas + ipinPi

e+ d

)
− koffPi with i = 0, 1 (S.15)

And the resulting PIN equilibrium line:

Pi =
konb

(e+ d) + konf
(p+ ipas)

koff (e+ d)− konf
ipin

with i = 0, 1 (S.16)

Since this equilibrium line is a mere combination of parameters, it is an exactly horizontal or vertical line in
the phase plane. The two equilibrium lines can, thus, only intersect once (�g S.4C). The intersection point is a
stable equilibrium in which (given no external bias) P0 = P1. Hence, no cell polarity occurs.

SC.IV: bistability at the membrane segment level combined with an unlimiting PIN pool: polarity (+
rest state + bipolar state) As an example of this scenario, consider the sigmoid concentration-based feedback
(Conc.III.a with n = 2) with an unlimiting PIN pool. The resulting single cell level PIN equation is:

dPi
dt

= konb
+

konf
A2
i

h2A +A2
i

− koffPi with i = 0, 1 (S.17)

Implementing the QSS for Ai and setting dPi

dt to 0 gives us three solutions for Pi, i.e. the PIN equilibrium
lines are either three horizontal or three vertical lines. These lines intersect a total of nine times, giving rise to �ve
unstable and four stable equilibria (�g S.4D). Two of the stable equilibria are polar, one represents the apolar rest
state in which P0 = P1 and both are low, and the last represents a bipolar state in which P0 = P1 and both are
high.

10



Figure S.4: Overview of the di�erent single cell variants with references to PAT models with (similar) single cell
dynamics. Solid lines: P0 equilibrium lines. Dashed lines: P1 equilibrium lines. Closed circles: unstable equilibria.
Open circles: stable equilibria. Arrows represent the direction of dynamics.
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S.5 Analysis of discussed PAT models

Here we describe how we formulated equations for PIN and auxin dynamics at the membrane segment and single
cell behaviour and thus analysed model behaviour for the models discussed less extensively in the main text.

S.5.1 Flux based models

S.5.1.1 Mitchison (1980)

Mitchison [1980] developed a model in which membrane segment permeability depends on �ux over that membrane.
Since his model does not contain PINs, we cannot use our default auxin equation. Translating his model to our
membrane segment model gives the following equation for auxin in the neighbouring cell (named �signal� in the
original paper):

dA

dt
= p− dA+ F (S.18)

in which p is production of the signal. In the original model, signal decay only takes place in a certain area of
the tissue. In order to analyse behaviour at the membrane segment and cellular level we replace this with a decay
taking place in each cell. Flux depends on the permeability of the membrane segment (D) and consists of the
in�ux over the membrane segment of interest and e�ux out of the neighbouring cell

F = D − eA (S.19)

Together equation S.18 and S.19 give the auxin equilibrium line:

A =
p+D

e+ d
(S.20)

In turn, membrane permeability, depends on �ux in a superlinear, saturating manner (membrane segment
variant 1a):

D = α
F 2

γ + F 2
+ β (S.21)

Substituting equation S.19 for F and rewriting such that A becomes a function of D gives a quadratic function.
Hence, the permeability equilibrium line has two solutions:

A =


αD+βD−D2+

√
αγD−αβγ−γD2+2βγD−γβ2

(α−D+β)e if F > 0

−−αD−βD+D2+
√
αγD−αβγ−γD2+2βγD−γβ2

(α−D+β)e if F ≤ 0
(S.22)

These two equilibrium lines (equation S.20 and S.22) can intersect in three equilibria, two of which are stable
(�g S.3C). Hence, bistability can occur at the membrane segment level (MS.III).

Each membrane segment in the model determines its permeability without taking into account the other
membrane segments of this cell, i.e. there is no competition for a "permeability factor" (SC.IV). As a result,
there are 9 possible equilibria, 4 of which are stable (�g S.4D). Two stable equilibria are symmetrical, they represent
apolar cells in which both membrane segments have a low or a high permeability. The two asymmetrical equilibria
represent polar cells with a low permeability of one membrane segment and a high permeability of the other.

S.5.1.2 Mitchison (1981)

In his second model [Mitchison, 1981], Mitchison did not take into account production of auxin in individual cells,
but instead allowed it to come in from a local source and redistribute along a tissue. On a similar note as above,
we replaced this localised production and decay by production and decay processes taking place in each cell. The
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auxin equation and auxin equilibrium line therefore remains the same with respect to the previous model (equation
S.18 and S.20 respectively).

In this second model, two aspects have changed with respect to the previous model. First, direction of �ux is
now important. Instead of absolute �ux, net e�ux feeds back on D. Second, the feedback no longer saturates,
but is a quadratic function. In addition, D is now a dynamic variable:

dD

dt
= αθ(F )F 2 + β −D (S.23)

which is equivalent to eq Flux.2.a.β is the basal �ux rate over the membrane segment of interest when F < 0.
By taking into account �degradation� of the permeability (−D), Mitchison already hints toward the existence of
a physical pump that is subject to turnover.

D now depends as follows on �ux:

D = αθ(F )F 2 + β (S.24)

Substituting the �ux and rewriting A as a function of D gives the full D equilibrium line (similar to eq Flux.2.a):{
A = αD+

√
−αβ+αD
αe if F > 0

D = β if F ≤ 0
(S.25)

which can intersect twice with the auxin equilibrium line (�g S.3B). The bottom equilibrium is stable, the
upper equilibrium is unstable. Above this unstable equilbrium, unlimited growth of membrane permeability takes
place. Thus bistability can occur at the membrane segment level (MS.II).

Similarly to the previous model by the same author, there is no communication between membrane segments
of one cell. Therefore the model falls into variant SC.IV (�g S.4D).

S.5.1.3 Feugier et al. (2005)

In Feugier et al. [2005], production of auxin depends on a dynamically modeled enzyme (S):

dS

dt
= p(1− A

Aeq
)− δS (S.26)

In which p is production of the enzyme, Aeq is the value of auxin for which the enzyme production becomes 0
and δ is decay of the enzyme. Setting dS

dt = 0 and �lling it in in the auxin equation gives:

dA

dt
= ε

p

δ
(1− A

Aeq
) + ipas + ipinP − eA (S.27)

which gives the same auxin equilibrium line as our default auxin equation (eq S.3). The authors also test the
e�ect of saturated e�ux, which does not alter the model's self-organising potential in our analysis.

In this model, net e�ux feeds back on konin 9 di�erent manners, most of which �t into our overview of
possible feedback functions (section S.2.3.2). In �g S.3 we indicate which possible combinations of auxin and PIN
dynamics are studied in the Feugier et al. [2005] model. All of these give bistable membrane segments (variants
MS.II and MS.III).

When these feedbacks are combined with a limiting PIN pool, they fall into category SC.II. If, instead, the
PIN pool is unlimiting, the models behave like the SC.IV variant.

S.5.1.4 Feugier and Iwasa (2006)

In Feugier and Iwasa [2006], a similar model was used as in the previous paper by the same authors, although
slight changes were implemented. The auxin dynamics are described by equation S.1 and thus give the auxin
equilibrium line from equation S.3. Net e�ux feeds back on kon in a quadratic manner and an limiting PIN pool
is assumed. Hence the PIN equation becomes (similar to eq Flux.2.b):
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dP

dt
= (konb

+ konf
θ(F )F 2)(Ptot − P )− koffP (S.28)

With konb
the basal exocytosis and konf

the �ux-dependent exocytosis. The resulting PIN equilibrium line
is given by eq Flux.2.b. Thus, the model behaves as variant MS.III (�g S.3C). As a result of the superlinear
feedback function and the limiting PIN pool, the single cell level is polar (variant SC.II, �g S.4B).

In this second model, the authors add a "�ux-bifurcator" in order to generate loop formation in veins. The
additional e�ects of the �ux-bifurcator on the 2-dimensional model behaviour are beyond the scope of our analysis.

S.5.1.5 Fujita and Mochizuki (2006)

Fujita and Mochizuki [2006] studied the stability of a simpli�ed �ux-based model. The auxin equation is given
by equation S.1 and, thus, the auxin equilibrium line by equation S.3. In the model, �ux feeds back on PIN
localisation in a superlinear manner. The model is not mechanistic, in that the feedback of �ux on PINs is not
speci�c for certain cycling rates. The PIN equation is:

dP0

dt
= m

(
1

1 + e−α(F0−β)
+

1

Ptot

(
1

1 + e−α(F0−β)
+

1

1 + e−α(F1−β)

)
P0

)
(S.29)

In which m is the growth rate, F0 and F1 are �uxes over the two membrane segments of one cell (given by
equation S.9), respectively, and α and β are constants determining the shape of the feedback. The resulting
PIN equilibrium line is given by (which for reasons of simplicity we write for A as a function of P ) (similar to eq
Flux.3.b):

A =
1

αe

(
(ipas + ipinP − β)α+ ln

(
(Ptot − P )eα(−F1+β) + Ptot − 2P

P

))
(S.30)

This line is able to intersect three times with the auxin equilibrium line, thus bistability occurs at the membrane
segment level (similar to MS.III, �g S.3C). Similar to the Smith et al. [2006] model, this PIN equilibrium line can
shift to the right or left due to changes in the context of the cell and so lose its bistability.

Due to the �nite PIN pool, that is at all times divided between P0 and P1, there is polarity at the single cell
level (variant SC.II, �g S.4B).

S.5.1.6 Alim and Frey (2010)

Alim and Frey [2010] use the same assumptions as Feugier and Iwasa [2006] (in our analysis, disregarding the
�ux-bifurcator), i.e. the PIN pool is limiting and PIN exocytosis depends superlinearly on the �ux (PIN equilibrium
line Flux.2.b). Hence, the Alim and Frey [2010] model belongs to membrane segment variant MS.III and single
cell variant SC.II (�g S.3C and S.4B).

S.5.2 Concentration based models

S.5.2.1 Jönsson et al. (2006)

The model constructed by Jönsson et al. [2006] is a concentration-based model used to simulate phyllotaxis. In
this model auxin in the neighbouring cells feeds back on the PIN localisation at the membrane segments and
membrane segments compete for a limiting PIN pool. Auxin transport is non-saturating. The authors apply two

di�erent feedback functions, a linear one and a superlinear, saturating one (where kon = A3

h3+A3 ). The linear
feedback function is used for analysis on spacing of peaks. In this case, it is assumed that the PIN dynamics are
in equilibrium and that all PINs recide on the membrane. Hence the PIN equilibrium line is given by:

P =
PtotA∑n
i Ai

(S.31)

14



Additionally, when studying a 1D �le, the authors assume that the pumping of auxin by PINs is linear. Therefore,
the auxin equilibrium line is given by eq S.3. These equilibrium lines can only intersect once, hence the linear
feedback does not allow for bistable behaviour at the membrane segment level (variant MS.I, �g S.3A). The
superlinear, saturating feedback that is used for the 2-dimensional simulations, introduces non-linearity into the
PIN equilibrium line and therefore does allow for bistable behaviour (variant MS.III, �g S.3C).

The linear feedback, combined with linear pumping, does not give cell polarity at the single cell level (variant
SC.I, �g S.4A), whereas the superlinear, saturating feedback, combined with saturated pumping, does (variant
SC.II, �g S.4B).

Interestingly, our tissue level analysis does show self-organised behaviour for the linear feedback function and
linear pumping that does not give bistability or cell polarity. To further investigate this alternative Turing-like
self-organising behaviour, we performed a bifurcation analysis on a 1-dimensional �ve cell model, consisting of 5
auxin and 10 PIN equations, speci�cally focusing on the parameter regions for which the cells in the tissue become
polarised. Fig S.5 shows a bifurcation diagram of how the tissue level equilibria in a ring of �ve cells depend on the
parameters Ptot and koff for the Jönsson et al. [2006] model and a modi�ed model that does not have a limiting
PIN pool (eq Conc.3.a with n = 1). In order to obtain insight in whether polar equilibria occur, we introduce
the variance (V ) which re�ects the di�erence in PIN levels on opposing membranes. Furthermore, to test for
consistent polarisation among all 5 cells of the tissue, we sum these di�erences across cells. Thus, a large variance
implies the presence of a strongly polar equilibrium in all cells of the tissue, whereas a variance of 0 implies that
all cells are apolar. Variance is thus formally de�ned as:

V =
∑

(Pi,0 − Pi,1)2 with i = 1, 2, 3, 4, 5 (S.32)

For the Jönsson et al. [2006] model we see that, above a critical Ptot and below a critical koff value, a
bifurcation occurs that leads to a situation with persistenly polarised cells across the tissue. In contrast, no such
behaviour was found for the alternative model without a limiting PIN pool. We therefore conclude that the limiting
PIN pool is required to obtain the self-organising behaviour found in the Jönsson et al. [2006] model.

S.5.2.2 Merks et al. (2007)

In the concentration-based model by Merks et al. [2007], e�ux of auxin through the PINs saturates. The authors
do not take into account production and decay of auxin in all cells, but allow auxin to �ux into the tissue from
a source and to leave it through a sink. Again, we approximate this global production and decay with local,
cellular production and decay processes. Therefore we can use equation S.2 for the auxin which provides the auxin
equilibrium line in eq S.4.

In contrast to other models in which a limiting PIN pool is assumed, the authors describe the cytosolic PINs
(Pc) dynamically:

dPc
dt

= ppin − dpinPc + koff
∑

Pi −
∑ konPc

km + Pc
(S.33)

In which ppin is the production of PINs, whereas dpin is the decay rate. Endocytosis as well as exocytosis are
summed over all membrane segments of the cell. The exocytosis rate saturates with the amount of PINs in the
cytosol and the half-maximum rate is obtained when Pc = km.

At the membrane segment level, P is described as:

dPi
dt

=
konPc
km + Pc

− koffPi (S.34)

kon depends on auxin in a saturating manner:

kon =
konf

A

hA +A
(S.35)

Setting equation S.33 to 0, given only one membrane segment (
∑
Pi = P ) and assuming that PIN production

and decay are in equilibrium gives us a measure for Pc. Filling this and kon from equation S.35 into equation S.34
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Figure S.5: Bifurcation diagrams for a ring of cells in the Jönsson et al. [2006] model and eq Conc.3.a with n = 1.
Dependence of variance V on Ptot (upper panels) and koff (lower panels). The Jönsson et al. [2006] model shows
stable equilibria in which V > 0 and, thus, permanent tissue polarisation occurs. The model with eq Conc.3.a
with n = 1 has only one equilibrium for V = 0. Hence, no polarity is found.
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and setting the resulting dP
dt equation to 0 provides the following PIN equilibrium line (similar to eq Flux.3.b) for

P at the membrane segment:

P =
ppinkonf

A

koff (ppinA+ dpinkmA+ ppinhA + dpinkmhA)
(S.36)

This line can intersect thrice with the auxin equilibrium line (�g S.3D), therefore bistability can occur at the
membrane segment level (variant MS.IV).

The single cell phase plane is shown in �g S.4D. In this model PIN concentrations change not only due to exo-
and endocytosis, but also due to production and decay of PINs. It is noteworthy that decay of PINs occurs only for
cytosolic but not for membrane bound PINs. As a result, although the cytosolic PIN pool has a �xed equilibrium
size, the total amount of PINs that a cell contains is not �xed, but varies with the amount that is present on the
membrane segments. As a consequence, the PIN pool in this model is e�ectively unlimiting, as can be seen from
the additional bipolar equilibrium at the single cell level. Hence, the model falls into single cell category SC.IV.

S.5.2.3 Newell et al. (2007)

For their combined concentration- and physical force-based model, Newell et al. [2007] used the PIN and auxin
equations �rst described by Jönsson et al. [2006] for the 1D cell �le (linear feedback, linear auxin transport) and
translated these into continuous equations. However, they did not study the model with a QSS assumption for
the PIN cycling and did not assume that all the PINs reside on the membrane as done by Jönsson et al. [2006].
The auxin equilibrium line is given by eq S.3 and the PIN equilibrium line is given by eq Conc.1.b. As a result, the
model is not bistable at the membrane segment level (variant MS.I, �g S.3A) and not polar at the single cell level
(variant SC.I, �g S.4A). However, due to the limiting PIN pool and up-the-gradient PIN polarisation, this model
is still able to self-organise at the tissue level, similar to the Jönsson et al. [2006] model with linear feedback and
non-saturated auxin transport.

S.5.2.4 Sahlin et al. (2009)

Sahlin et al. [2009] developed a concentration-based model for phyllotaxis. They include apolar expression of
AUX1, which cannot be included in our framework, because we do not explicitly model the cell wall. Auxin
transport is saturated for high auxin concentrations, hence the auxin equilibrium line is given by eq S.4. The PIN
pool is limiting, and several feedback functions have been used. The most simple feedback function is linear which,
combined with the limiting PIN pool gives the PIN equilibrium line in eq Conc.1.b. Due to the combination of the
non-linear auxin equilibrium line and the non-linear PIN equilibrium line, the model is bistable at the membrane
segment level (variant MS.IV). At the single cell level, polarity occurs (variant SC.II).

S.5.3 Joined concentration- and �ux-based model

Bayer et al. 2009 Bayer et al. [2009] incorporated both up-the-gradient and with-the-�ux PIN polarisation into
their model. Cells in the model apply one of these two mechanisms, deciding which one based on their auxin level.
The auxin equation is the same as used in their previous model [Smith et al., 2006], which is described in the
main text. The authors assume a limiting PIN pool at the single cell level and saturated transport of auxin (with
co-operativity 2).

In the up-the-gradient feedback regime the model is identical to the [Smith et al., 2006] model. It thus falls
into category MS.III at the membrane segment and shows bistable behaviour (�g S.3C). At the single cell level,
the model is polar (variant SC.II, �g S.4B).

In the with-the-�ux regime, the authors apply the same shape of feedback function, but substitute auxin
concentration with a new variable ��ux history� that depends on the net e�ux (similar to eq Flux.3.b):

P =
Ptotb

F∑
n b

Fi
(S.37)
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in which b is a base parameter that the authors set to 2 or 3 and the sum is taken over the �uxes over all
membrane segments. The resulting PIN equilibrium line has a superlinear saturating shape that can intersect three
times with the auxin equilibrium line given by eq S.4 (variant MS.III, �g S.3C). Hence, also in the with the �ux
regime, the model supports membrane bistability, and cell polarity (variant SC.II, �g S.4B).

Ptot is calculated dynamically, as in the model by [Smith et al., 2006], however, since all the PINs are assumed
to be on the membrane, these models do not have the issue described for the model by Merks et al. [2007], namely
that the PIN pool is e�ectively unlimited.

S.5.4 Mechanistic models

Heisler et al. 2010 In the model by Heisler et al. [2010], PIN localisation is determined by wall stress which
in turn is dependent on auxin concentrations within neighbouring cells. Active transport of auxin is saturated,
therefore the auxin dynamics are determined by equation S.2 and the corresponding auxin equilibrium line is given
by equation S.4. As in their previous model [Jönsson et al., 2006], the authors assume that PIN dynamics are at
all times in equilibrium and that all PINs reside on the membrane. They write the following dependency of PINs
on the membrane stresses experienced by a membrane segment:

P =
Ptotk2s

n

1 +
∑
k2sni

(S.38)

in which Ptot is the total amount of PINs in a cell, s is the stress experienced by a single membrane segment,
k2 is the level by which PINs depend on the stress and n is the co-operativity with which this happens. The sum
is taken over all the membrane segments belonging to one cell. For a single membrane segment, we can write:

P =
Ptotk2s

n

1 + k2sn + k2hn
(S.39)

In which h represents the stresses experiences by the other membrane segments that are not in focus and thus
assumed to be constant. The stress negatively depends on wall elasticity as follows:

s =
F

A0(1 +
E(A)
E(Ai)

)
(S.40)

F is the isotropic force on each wall, A0 is the cross section of a cell and Ai is the auxin content of the cell
to which the membrane segments belongs and is thus assumed to be constant. E(A) is the wall elasticity which
is a function of auxin in the neighbouring cell:

E = Emin +
(Emax − Emin)km3

A+ km3
(S.41)

Emin is the minimal and Emax the maximal wall elasticity. E decreases with auxin. k3 is a saturation
constant and m is the co-operativity with which elasticity depends on auxin. The full PIN equilibrium line is
obtained by substituting S.40 and S.41 into S.39 Because of its length and complexity we refrain from giving it
explicitly. However, for the parameters used by the authors, it can be shown to describe a sublinear, saturating,
function (similar to eq Conc.3.a). However, considering that the auxin equilibrium line is also a non-linear line,
this should theoretically allow for three intersection points between the equilibrium lines and thus the model falls
into membrane segment category MS.IV (�g S.3D). In line with this and because of the limiting PIN pool, we
expect polarity at the single cell level (variant SC.II, �g S.4B).

Wabnik et al. 2010 Wabnik et al. [2010] developed a PAT model in which auxin in the cell wall, by binding to
a receptor, inhibits endocytosis of PINs from the nearest membrane. In order to study this model, we extended
our framework to include the cell wall. In our membrane segment model, A is the concentration of auxin in the
neighbouring cell. For this model, we use A for the concentration of auxin in the cell wall adjoining the membrane
segment of interest. The dynamics are the same, the cell wall receives auxin by active and passive transport over
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the membrane segment of interest and it loses auxin by in�ux. Hence, we can use the same equation that we used
for auxin in the neighbouring cells for saturated e�ux (equation S.2 and corresponding equilibrium line S.4).

Similar to Merks et al. [2007], the authors model the cellular PIN pool dynamically, in this case, however,
feedback is implemented through the endocytosis rate koff . The cytosolic PIN pool is given by:

dPc
dt

= ppin − dpinPc +
∑
n

kpinPi −
∑
n

konPc (S.42)

In which the sums are taken over all membrane segments belonging to one cell.
The equation for PINs on the membrane segment is:

dP

dt
= konPc − koffP (S.43)

For the formation of complexes (C) between auxin and receptor in the cell wall, we use, as in the original
publication, a QSS assumption. Thus allows us to write

C =
2rTA

2kd +
∑
nAi

(S.44)

In which rT is the total amount of receptors in the cell wall, kd is a saturation constant and the sum is taken
over all segments of the cell wall.

For the membrane segment level, since we assume auxin concentrations to be constant in all compartments
other than the cell wall segment of interest, we can rewrite eq S.44 as:

C =
2rTA

2kd + h+A
(S.45)

In which h now represents the auxin concentrations in other cell wall compartments. The endocytosis rate of
PINs now depends on the amount of complex as such:

koff = koffb +
kofff
1 + C

(S.46)

The PIN equilibrium line that is obtained by substituting equation S.46 and S.45 into S.43 is a saturating,
sublinear function. Hence, it can intersect more than once with the non-linear auxin equilibrium line and there is
bistability at the membrane segment level (variant MS.IV, �g S.3A).

For the single cell level, as in Merks et al. [2007], the PIN pool in the Wabnik et al. [2010] model increases
with the amount of PINs that are on the membrane. Therefore, it is e�ectively unlimiting. There is, however, still
a slight e�ect of P0 on P1 and vice versa, therefore the PIN equilibrium lines are not completely horizontal and
vertical and the model belongs to category SC.IV.

To study the tissue behaviour, we extended the framework to include cell walls. We found that the model is
able to self-organise after a perturbation is provided to one of the cells. The resulting PIN polarisation is similar
to with-the-�ux models, where the PINs point from the source to the sink in a cell �le, and all point in the same
direction in a ring of cells. In order to obtain this behaviour, auxin di�usion in the cell wall must be su�ciently low,
to allow for the formation of an auxin gradient. Therefore, it appears that the model's self-organising behaviour
relies on across-cell wall polarity as well as cell polarity.
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