10 som

Fig. S1. The cdh15 transgenic muscle promoter is expressed in developing somites during early and mid-
somitogenesis. (A-D) Whole-mount RNA in situ hybridization was performed on 10 somite (A,C) and 16 somite (B,D) cdh15:GFP transgenic embryos using GFP anti-sense (C,D) RNA probes or sense (A,B) control probes. Flat-mounted embryos are depicted, with anterior on the left. Significant background staining is seen in the anterior embryo in sense controls. High levels of somite-specific staining are seen only in antisense probe-treated embryos.

Fig. S2. Gene expression of muscle markers in sorted cell populations from cdh15:gfp and mylz2:mCherry fish, quantified by QPCR. Cells from three adult cdh15:gfp and three adult mylz2:mCherry fish were double-sorted for GFP or mCherry positivity, respectively, to relative purity ($>90 \%$). RNA was isolated and QPCR was performed to quantify expression of muscle genes in the fluorophore-positive populations. There was a significant increase ($P=0.007$, Student's t-test) in mylz2 expression in mCherry-positive cells from mylz2:mCherry fish, and a non-significant increase in cpvl, a marker of muscle differentiation. There was a non-significant increase in myod1 and myog expression in GFP-positive cells from cdh15:gfp fish. Expression of myf5, cdh15, pax7, myog and cpvl could not be evaluated in one cdh15:gfp fish ('cdh15-1') owing to insufficient RNA. The average of three experimental replicates is depicted per sample. Error bars represent s.e.m.

Fig. S3. rag2 transgenic muscle promoter recapitulates endogenous expression patterns during development. (A-H) Whole-mount RNA in situ hybridization was performed on endogenous rag2 transcript in AB strain wild-type embryos (A-D), or on GFP transcript in transgenic embryos (E-H). (A,E) 10 somite stage. (B,F) 15 somite stage. (C,G) 24 hours post fertilization (hpf). (D,H) 5 days post fertilization (dpf). Anterior is on the left. Arrowheads denote the location of the thymus in 5 dpf larvae.

Fig. S4. Muscle promoter-driven KRAS ${ }^{G 12 D}$ expression in mosaic transgenic embryos and larvae are largely consistent with endogenous expression patterns. (A-VV) Whole-mount RNA in situ hybridization was performed using KRAS anti-sense RNA probes (E-P,U-FF,KK-VV) or KRAS sense controls (A-D,Q-T,GG-JJ) on embryos or larvae that had been injected at the one-cell stage with rag2:KRAS ${ }^{6120}$ (A-P), cdh15:KRAS ${ }^{6120}$ (Q-FF), or mylz2:KRAS ${ }^{6120}$ (GGVV) vectors. For each time point, one representative sense control staining and three representative anti-sense probe stainings are depicted. (A,E,I,M,Q,U,Y,CC,GG,KK,OO,SS) 10 somite stage. (B,F,J,N,R,V,Z,DD,HH,LL,PP,TT) 16 somite stage. (C,G,K,O,S,W,AA,EE,II,MM,QQ,UU) 24 hpf. (D,H,L,P,T, ,X,BB,FF,J,NN,RR,VV) 5 dpf. Black arrowheads indicate areas of muscle staining at 5 dpf. Unfilled arrowhead indicates area in one rag2 embryo (1 out of 71 embryos) that displayed a population of cells with anti-sense staining. Arrows represent positive muscle fibers in a 10 somite mylz2 embryo.

Fig. S5. rag2:KRAS ${ }^{G 12 D}$, cdh15:KRAS ${ }^{612 D}$ and mylz2:KRAS ${ }^{G 12 D}$ tumors express phospho-S6 ribosomal protein (pS6RP) at similar levels. (A-N) H\&E staining (A-G) and immunohistochemistry staining of S6RP (H-N) of two representative rag2 (A,B,H,I), cdh15 (C,D,J,K) and mylz2 (E,F,L,M) tumors, or one normal muscle (G,N) section. Scale bars: $50 \mu \mathrm{~m}$. All images are at the same magnification.

Table S1. Up- and downregulated gene lists for the following comparisons. Wild-type versus cdh15 tumors (sheet A), wild-type versus mylz2 tumors (sheet B), wild-type versus rag2 tumors (sheet C), cdh15 versus mylz2 tumors (sheet D), cdh15 versus rag2 tumors (sheet E) and mylz2 versus rag2 tumors (sheet F). Venn diagrams depicting the overlap of dysregulated genes in tumors compared to wild type are shown in sheet G. GSEA plots showing enrichment of mylz2 signature compared with rag2 (sheet H) or cdh15 (sheet I) in human well-differentiated (WD) RMS. Heatmaps of the GSEA results are also included.

Download Table S1

Table S2. GFP-positive cells are enriched for tumor-propagating capability in secondary transplantations of rag2 and cdh15 tumors. Results are depicted as number of fish showing tumor engraftment out of number of total fish transplanted for each dilution.

tumor	cell	\# cells transplanted		
	population	$\mathbf{1 , 0 0 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0}$
rag2	G+R-	-	6 of 10	1 of 9
	G+R+	-	2 of 10	0 of 9
	G-R+	0 of 8	-	-
	G-R-	0 of 10	-	-
$\mathbf{c d h 1 5}$	G+R-	-	-	2 of 16
	G+R+	-	4 of 7	1 of 14
	G-R+	-	0 of 14	-
	G-R-	0 of 13	-	-

Table S3. Oligonucleotide primer sequences

Primers for cloning promoter elements	
cdh15-XhoI-F	5'-AATTCCCTCGAGTCATCTTGTGTGCAACTACTGTGTCG-3'
cdh15-BamHI-R	5'-GGAATTGGATCCCCTCAATGACCACAGTAAACCACTGC-3'
mylz2-XhoI-F	5'-AATTCCGTCGACCTCGAGATTCGCCACAGAGGAATGAGCCACCA-3'
mylz2-BamHI-R	5'-GGAATTGGATCCGTCGAGACGGTATGTGTGAAGTCT-3'

Primers for generating in situ hybridization probes	
GFP-T7-F	5^{\prime}-TTCCGTAATACGACTCACTATAGGGGAAGGTGATGCAACATACGG-3'
GFP-SP6-R	5^{\prime}-TTCCGATTTAGGTGACACTATAGAACCATGTGGTCTCTCTTTTCG-3'
mCherry-T7-F	5^{\prime}-TTCCGTAATACGACTCACTATAGGGACATGGCCATCATCAAGGAG-3'
mCherry-SP6-R	5^{\prime}-TTCCGATTTAGGTGACACTATAGAAGTTCCACGATGGTGTAGTCC-3'
mylz2-T7-F	5^{\prime}-TTCCGTAATACGACTCACTATAGGGTCATCAGCAAAGACGACCTTAGG-3'
mylz2-SP6-R	5^{\prime}-TTCCGATTTAGGTGACACTATAGAATTACTCCTCCTTCTCCTCTCCGTG-3'
cdh15-T7-F	5^{\prime}-TTCCGTAATACGACTCACTATAGGGAACAAACTGATTGCGGAGGTTG-3'
cdh15-SP6-R	5^{\prime}-TTCCGATTTAGGTGACACTATAGAATGTCTTCATCCAAGGCACTAAGC-3'
rag2-T7-F	$5^{\prime}-$ TTCCGTAATACGACTCACTATAGGGAGCTGTCCTCCAGTCTCTACAT-3'
rag2-SP6-R	5^{\prime}-TTCCGATTTAGGTGACACTATAGAAAGACTCCATATGGACTCCCACA-3'
hKRAS-SP6-F	5'-TTCCATTTAGGTGACACTATAGCTTGTGGTAGTTGGAGCTGA-3'
hKRAS-T7-R	5'-TTCCGTAATACGACTCACTATAGGGCACTAATGTATAGAAGGCATC-3'

Primers for quantitative RT-PCR	
EF1a-QRT-F	5'-CATCGAGAAGTTCGAGAAGGAAGC-3'
EF1a-QRT-R	5'-GTCAATGGTGATACCACGCTCAC-3'
hKRAS-QRT-F	5'-TTGATGGAGAAACCTGTCTCTTGG-3'
hKRAS-QRT-R	5'-CAAATACACAAAGAAAGCCCTCCC-3'
pax7b-QRT-F	5'-CAGTATTGACGGCATTCTGGGAG-3'
pax7b-QRT-R	5'-TCTCTGCTTTCTCTTGAGCGGC-3'
myf5-QRT-F	5'-CCAGACAGTCCAAACAACAGACC-3'
myf5-QRT-R	5'-TGAGCAAGCAGTGTGAGTAAGCG-3'
cdh15-QRT-F	5'-CTAAGGAAAGATGCACCCCATTAC-3'
cdh15-QRT-R	5'-TCAGAGCTGTGTCGTATGGTGG-3'
myog-QRT-F	5'-GTGGACAGCATAACGGGAACAG-3'
myog-QRT-R	5'-TCTGAAGGTAACGGTGAGTCGG-3'
desmin-QRT-F	5'-CGAGATTGACTCTCTCAAGGGCAC-3'
desmin-QRT-R	5'-GGGCGATAGTGTCCTGATAACCAC-3'
mylz2-QRT-F	5'-TTGACCACTCAGTGCGACAGGTTC-3'
mylz2-QRT-R	5'-AACATTGCCAGCCACATCTGGG-3'
cpvl-QRT-F	5'-TTGGAGCTGACCCGGGCAAA-3'
cpvl-QRT-R	5'-CACCAGGAAGGGGACCCACC-3'

