

Fig. S1. Average effective degradation rate of Her7 protein in different genetic backgrounds. Error bars reprresent normalized standard errors.

Movie 1. Wild type. Simulations of her1 mRNA levels in 4×4 cells located in the posterior PSM in wild-type embryos. Each hexagon represents a cell, with its color indicating its level of her1 mRNA. Darker colors indicate lower levels, whereas lighter colors represent higher levels.

Movie 2. her1- mutant. Simulations of her1 mRNA levels in 4×4 cells located in the posterior PSM in her1-- mutant embryos. Each hexagon represents a cell, with its color indicating its level of her1 mRNA. Darker colors indicate lower levels, whereas lighter colors represent higher levels.

Movie 3. her7 ${ }^{-/}$mutant. Simulations of her1 mRNA levels in 4×4 cells located in the posterior PSM in her7--/ mutant embryos. Each hexagon represents a cell, with its color indicating its level of her1 mRNA. Darker colors indicate lower levels, whereas lighter colors represent higher levels.

Movie 4. hes6 $\boldsymbol{6}^{-/}$mutant. Simulations of her1 mRNA levels in 4×4 cells located in the posterior PSM in hes6 ${ }^{-/-}$mutant embryos. Each hexagon represents a cell, with its color indicating its level of her1 mRNA. Darker colors indicate lower levels, whereas lighter colors represent higher levels.

Movie 5. her $^{--/}$;hes6 $\boldsymbol{\sigma}^{-/}$mutant. Simulations of her1 mRNA levels in 4×4 cells located in the posterior PSM in her7 $7^{-/-\cdot}$,hes6 $6^{-/-}$ mutant embryos. Each hexagon represents a cell, with its color indicating its level of her1 mRNA. Darker colors indicate lower levels, whereas lighter colors represent higher levels.

Movie 6. notch1a ${ }^{-/-}$mutant. Simulations of her1 mRNA levels in 4×4 cells located in the posteriorPSM in notch1a ${ }^{-/-}$mutant embryos. Each hexagon represents a cell, with its color indicating its level of her1 mRNA. Darker colors indicate lower levels, whereas lighter colors represent higher levels.

Table S1. Parameter ranges and values used in the study. The initial parameter ranges (second column) were broadly selected and centered around the literature information. These ranges have been narrowed down by comparing deterministic and stochastic simulations of our model to the wild-type and mutant period, amplitude and synchronization observations (third column). One of the parameter sets that has passed these comparisons is shown in the fourth column. This parameter set has been used to create the Figs 2-4.

Parameter	Initial range	Final range	Value in Figs 2-4
psh_{1}	5-60	30-60	49.9139
psh_{6}	5-60	27-57	34.3117
psh_{7}	5-60	10-57	28.5626
psd	5-60	22-59	37.7828
pdh_{1}	0.1-0.4 1/min	0.12-0.37 1/min	0.34951
pdh_{6}	0.1-0.4 1/min	0.11-0.39 1/min	0.14824
pdh_{7}	0.1-0.4 $1 / \mathrm{min}$	0.11-0.4 1/min	0.249715
pdd	0.1-0.4 $1 / \mathrm{min}$	0.15-0.38 $1 / \mathrm{min}$	0.324316
msh_{1}	15-65	32-63	48.3084
msh_{6}	15-65	31-62	36.4073
msh_{7}	15-65	34-62	39.685
msd	15-65	31-65	60.5577
mdh_{1}	0.1-0.4 $1 / \mathrm{min}$	0.2-0.38 1/min	0.322965
mdh_{6}	$0.1-0.41 / \mathrm{min}$	0.13-0.39 1/min	0.146372
mdh_{7}	$0.1-0.41 / \mathrm{min}$	0.28-0.4 1/min	0.381738
mdd	0.1-0.4 1/min	0.12-0.39 1/min	0.352056
$\mathrm{pdh}_{1,1}$	0.1-0.4 1/min	0.25-0.4 1/min	0.390961
$\mathrm{pdh}_{1,6}$	$0.1-0.41 / \mathrm{min}$	$0.1-0.361 / \mathrm{min}$	0.29774
$\mathrm{pdh}_{1,7}$	0.1-0.4 1/min	0.16-0.34 $1 / \mathrm{min}$	0.320157
$\mathrm{pdh}_{6,6}$	$0.1-0.41 / \mathrm{min}$	0.11-0.34 1/min	0.268042
$\mathrm{pdh}_{6,7}$	0.1-0.4 1/min	$0.26-0.41 / \mathrm{min}$	0.352037
$\mathrm{pdh}_{7,7}$	0.1-0.4 1/min	0.12-0.4 1/min	0.251601
nmh_{1}	$5-12 \mathrm{~min}$	8.8-12 min	10.0213
nmh_{7}	$5-12 \mathrm{~min}$	8.6-11.6 min	10.4515
nmd	$5-12 \mathrm{~min}$	$6.1-12 \mathrm{~min}$	7.74472
nph_{1}	0.3-2 min	0.8-2 min	1.5398
nph_{6}	0.3-2 min	$0.6-1.8 \mathrm{~min}$	0.886233
nph_{7}	0.3-2 min	$0.4-1.8 \mathrm{~min}$	0.539972
npd	$9-27 \mathrm{~min}$	$10-18 \mathrm{~min}$	13.2661
$\mathrm{dah}_{1,1}$	0.0003-0.03	0.005-0.03	0.0179429
$\mathrm{ddh}_{1,1}$	0.003-0.3	0.06-0.3	0.220856
$\mathrm{dah}_{1,6}$	0.0003-0.03	0.006-0.029	0.0270209
$\mathrm{ddh}_{1,6}$	0.003-0.3	0.004-0.18	0.0917567
dah $_{1,7}$	0.0003-0.03	0.0006-0.009	0.00120525
$\mathrm{ddh}_{1,7}$	0.003-0.3	0.03-0.28	0.258167
$\mathrm{dah}_{6,6}$	0.0003-0.03	0.001-0.016	0.0148271
$\mathrm{ddh}_{6,6}$	0.003-0.3	0.05-0.29	0.251173
$\mathrm{dah}_{6,7}$	0.0003-0.03	0.007-0.03	0.0216093
$\mathrm{ddh}_{6,7}$	0.003-0.3	0.03-0.3	0.188923
$\mathrm{dah}_{7,7}$	0.0003-0.03	0.002-0.024	0.0202756
$\mathrm{ddh}_{7,7}$	0.003-0.3	0.07-0.3	0.161018
critph $_{1,1}$	30-1500	160-720	587.298
critph $_{6,7}$	30-1500	200-920	769.628
critpd	30-1500	240-720	490.254

APPENDIX S1

DELAY DIFFERENTIAL EQUATION (DDE) MODEL

A. INTRODUCTION

A.1. Mass Action Kinetics

Mass action kinetics describe the behavior of reactants and products in chemical reactions. The behavior is described as an equation where the rate of the reaction is directly proportional to the concentration of reactants. We have used mass action kinetics to create our delay differential equation model.

Chemical reactions can be classified according to the dependency of the reaction rate on the number of reactants, which is called the order of a reaction. In a zero order reaction, the reaction rate does not depend on the concentration of reactants. In first and second order reactions, the reaction rates depend on the concentrations of one reactant or two reactants, respectively. The reaction rates for zero, first and second order reactions can be written as described in the table below. Here, r represents the unit rate for each reaction.

Zero Order Reaction	$\varnothing \xrightarrow{\mathrm{r}} \mathrm{P}$	Reaction Rate $=\mathrm{r}$
First Order Reaction	$\mathrm{R}_{1} \xrightarrow{\mathrm{r}} \mathrm{P}$	Reaction Rate $=\mathrm{r} \cdot \mathrm{R}_{1}$
Second Order Reaction	$\mathrm{R}_{1}+\mathrm{R}_{2} \xrightarrow{\mathrm{r}} \mathrm{P}$	Reaction Rate $=\mathrm{r} \cdot \mathrm{R}_{1} \cdot \mathrm{R}_{2}$

In our model hes6 mRNA synthesis is a zero order reaction. Translation of mRNA to protein, degradation of mRNA and protein, and dimer dissociation reactions are first order reactions. Dimer association reactions are second order reactions.

A.2. Model Variables

In the delay differential equation model, mh_{i} where $\mathrm{i} \in\{1,7,6\}$ and md represent the number of mRNA molecules of her1, her 7 , hes6 and deltaC, respectively. ph_{i} where $\mathrm{i} \in\{1,7,6\}$ and pd represent the number of protein monomers of Her1, Her7, Hes6 and DeltaC, respectively. $\mathrm{ph}_{\mathrm{i}, \mathrm{j}}$ where $\mathrm{i} \leq \mathrm{j}$ and $\mathrm{i}, \mathrm{j} \in\{1,7,6\}$ represent the number of molecules of Her1-Her1, Her1Her7, Her1-Hes6, Her7-Her7, Her7-Hes6 and Hes6-Hes6 dimers. In the model equations, we represent the $\mathrm{k}^{\text {th }}$ cell as c_{k} and time as t .

B. MONOMER PROTEIN LEVELS

B.1. Her 1 Monomer Protein Levels

[Rate of Change in Her1 Monomer Protein Levels] $=$ [Her1 Protein Synthesis] - [Her1 Protein Degradation] + [Her1-Her1 Dimer Dissociation] + [Her1-Her7 Dimer Dissociation] + [Her1Hes6 Dimer Dissociation] - [Her1-Her1 Dimer Association] - [Her1-Her7 Dimer Association] -[Her1-Hes6 Dimer Association]
(i) Rate of Change in Her1 Monomer Protein Levels $=\frac{\partial \mathrm{ph}_{1}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)}{\partial \mathrm{t}}$.
(ii) Her1 Protein Synthesis $\left(\mathrm{mh}_{1} \rightarrow \mathrm{ph}_{1}\right): \mathrm{psh}_{1} \cdot \mathrm{mh}_{1}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}-\mathrm{nph}_{1}\right)$ where psh_{1} represents the Her1 protein synthesis rate and $n p h_{1}$ represents the Herl translation time delay.
(iii) Herl Protein Degradation $\left(\mathrm{ph}_{1} \rightarrow \varnothing\right): \mathrm{pdh}_{1} \cdot \mathrm{ph}_{1}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)$ where pdh_{1} represents the Herl protein degradation rate.
(iv) Her1-Her1 Dimer Dissociation $\left(\mathrm{ph}_{1,1} \rightarrow \mathrm{ph}_{1}+\mathrm{ph}_{1}\right): 2 \cdot \mathrm{ddh}_{1,1} \cdot \mathrm{ph}_{1,1}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)$ where $\operatorname{ddh}_{1,1}$ represents the Herl-Her1 dimer dissociation rate. We use 2 in the equation since a Her1-Her1 dimer is formed by two Herl monomers.
(v) Her1-Her7 Dimer Dissociation $\left(\mathrm{ph}_{1,7} \rightarrow \mathrm{ph}_{1}+\mathrm{ph}_{7}\right): \operatorname{ddh}_{1,7} \cdot \mathrm{ph}_{1,7}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)$ where $\mathrm{ddh}_{1,7}$ represents the Her1-Her7 dimer dissociation rate.
(vi) Her1-Hes6 Dimer Dissociation $\left(\mathrm{ph}_{1,6} \rightarrow \mathrm{ph}_{1}+\mathrm{ph}_{6}\right): \operatorname{ddh}_{1,6} \cdot \mathrm{ph}_{1,6}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)$ where $\operatorname{ddh}_{1,6}$ represents the Her1-Hes6 dimer dissociation rate.
(vii) Her1-Herl Dimer Association $\left(\mathrm{ph}_{1}+\mathrm{ph}_{1} \rightarrow \mathrm{ph}_{1,1}\right): 2 \cdot \mathrm{dah}_{1,1} \cdot \mathrm{ph}_{1}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right) \cdot \mathrm{ph}_{1}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)$ where dah $_{1,1}$ represents the Herl-Herl dimer association rate. We use 2 in the equation since a Her1Herl dimer is formed by two Her1 monomers.
(viii) Herl-Her7 Dimer Association $\left(\mathrm{ph}_{1}+\mathrm{ph}_{7} \rightarrow \mathrm{ph}_{1,7}\right): \operatorname{dah}_{1,7} \cdot \mathrm{ph}_{1}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right) \cdot \mathrm{ph}_{7}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)$ where dah $_{1,7}$ represents the Herl-Her7 dimer association rate.
(ix) Her1-Hes6 Dimer Association $\left(\mathrm{ph}_{1}+\mathrm{ph}_{6} \rightarrow \mathrm{ph}_{1,6}\right): \operatorname{dah}_{1,6} \cdot \mathrm{ph}_{1}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right) \cdot \mathrm{ph}_{6}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)$ where dah $_{1,6}$ represents the Her1-Hes6 dimer association rate.

Combining (i)-(ix) we obtain the equation for the rate of change of Her1 monomer protein levels.

$$
\begin{aligned}
& \frac{\partial \mathrm{ph}_{1}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)}{\partial \mathrm{t}}=\mathrm{psh}_{1} \cdot \mathrm{mh}_{1}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}-\mathrm{mph}_{1}\right)-\mathrm{pdh}_{1} \cdot \mathrm{ph}_{1}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)+2 \cdot \mathrm{ddh}_{1,1} \cdot \mathrm{ph}_{1,1}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)+\mathrm{ddh}_{1,7} \cdot \mathrm{ph}_{1,7}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right) \\
& +\mathrm{ddh}_{1,6} \cdot \mathrm{ph}_{1,6}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)-2 \cdot \operatorname{dah}_{1,1} \cdot \mathrm{ph}_{1}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right) \cdot \mathrm{ph}_{1}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)-\operatorname{dah}_{1,7} \cdot \mathrm{ph}_{1}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right) \cdot \mathrm{ph}_{7}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)-\operatorname{dah}_{1,6} \cdot \mathrm{ph}_{1}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right) \cdot \mathrm{ph}_{6}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)
\end{aligned}
$$

If we use the summation symbol $\left(\sum\right)$ and define $C_{1,1}=2, C_{1,7}=1$ and $C_{1,6}=1$ we can rewrite this equation as

$$
\frac{\partial \mathrm{ph}_{1}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)}{\partial \mathrm{t}}=\mathrm{psh}_{1} \cdot \mathrm{mh}_{1}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}-\mathrm{nph}_{1}\right)-\mathrm{pdh}_{1} \cdot \mathrm{ph}_{1}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)+\sum_{\mathrm{j} \in\{1,7,6\}} \mathrm{C}_{1, \mathrm{j}} \cdot\left[\mathrm{ddh}_{1, \mathrm{j}} \cdot \mathrm{ph}_{1, \mathrm{j}}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)-\mathrm{dah}_{1, \mathrm{j}} \cdot \mathrm{ph}_{1}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right) \cdot \mathrm{ph}_{\mathrm{j}}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)\right]
$$

B.2. Her/Hes Monomer Protein Levels (General Formula)

Similar steps to the Her1 derivation can be used to derive the equations for Her7 and Hes6 monomer protein levels. We can combine the equations for Her1, Her7 and Hes6 monomer levels in one equation.

$$
\frac{\partial \mathrm{ph}_{\mathrm{i}}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)}{\partial \mathrm{t}}=\mathrm{psh}_{\mathrm{i}} \cdot \mathrm{mh}_{\mathrm{i}}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}-\mathrm{nph}_{\mathrm{i}}\right)-\mathrm{pdh}_{\mathrm{i}} \cdot \mathrm{ph}_{\mathrm{i}}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)+\sum_{\substack{i, j, j a n d \\ \mathrm{i}, \leqslant \in\{\mathrm{i}, 7,6\}}} \mathrm{C}_{\mathrm{i}, \mathrm{j}} \cdot\left[\mathrm{ddh}_{\mathrm{i}, \mathrm{j}} \cdot \mathrm{ph}_{\mathrm{i}, \mathrm{j}}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)-\mathrm{dah}_{\mathrm{i}, \mathrm{j}} \cdot \mathrm{ph}_{\mathrm{i}}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right) \cdot \mathrm{ph}_{\mathrm{j}}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)\right]
$$

$$
\text { where } C_{i, j}=2 \text {, if } \mathrm{i}=\mathrm{j} \text { and } \mathrm{C}_{\mathrm{i}, \mathrm{j}}=1 \text {, if } \mathrm{i} \neq \mathrm{j}
$$

In this equation $\mathrm{psh}_{\mathrm{i}}$ and $\mathrm{pdh}_{\mathrm{i}}$ where $\mathrm{i} \in\{1,7,6\}$ represent the Her1, Her7 and Hes6 protein synthesis and degradation rates, respectively. dah ${ }_{i, j}$ and $\operatorname{ddh}_{i, j}$ where $i \leq j$ and $i, j \in\{1,7,6\}$ represent the Her1-Her1, Her1-Her7, Her1-Hes6, Her7-Her7, Her7-Hes6 and Hes6-Hes6 dimer association and dissociation rates, respectively.

B.3. DeltaC Protein Levels

[Rate of Change in DeltaC Protein Levels] $=$ [DeltaC Protein Synthesis] - [DeltaC Protein Degradation]
(i) Rate of Change in DeltaC Protein Levels $=\frac{\partial \mathrm{pd}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)}{\partial \mathrm{t}}$.
(ii) DeltaC Protein Synthesis ($\mathrm{md} \rightarrow \mathrm{pd}$) : psd $\cdot \mathrm{md}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right.$-npd) where psd represents the DeltaC protein synthesis rate and npd represents the DeltaC translation time delay.
(iii) DeltaC Protein Degradation $(\mathrm{pd} \rightarrow \varnothing): \operatorname{pdd} \cdot \operatorname{pd}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)$ where pdd represents the DeltaC protein degradation rate.

Combining (i)-(iii) we obtain the equation for the rate of change of DeltaC protein levels.

$$
\frac{\partial \mathrm{pd}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)}{\partial \mathrm{t}}=\mathrm{psd} \cdot \mathrm{md}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}-\mathrm{npd}\right)-\mathrm{pdd} \cdot \operatorname{pd}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)
$$

C. DIMER PROTEIN LEVELS

C.1. Her1-Her1 Dimer Levels

[Rate of Change in Her1-Herl Dimer Levels] = [Her1-Her1 Dimer Association] - [Her1-Her1 Dimer Dissociation] - [Her1-Her1 Dimer Degradation]
(i) Rate of Change in Her1 Dimer Protein Levels $=\frac{\partial \mathrm{ph}_{1,1}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)}{\partial \mathrm{t}}$.
(ii) Her1-Herl Dimer Association $\left(\mathrm{ph}_{1}+\mathrm{ph}_{1} \rightarrow \mathrm{ph}_{1,1}\right): \operatorname{dah}_{1,1} \cdot \mathrm{ph}_{1}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right) \cdot \mathrm{ph}_{1}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)$ where dah $_{1,1}$ represents the Herl-Her1 dimer association rate.
(iii) Her1-Her1 Dimer Dissociation $\left(\mathrm{ph}_{1,1} \rightarrow \mathrm{ph}_{1}+\mathrm{ph}_{1}\right): \operatorname{ddh}_{1,1} \cdot \mathrm{ph}_{1,1}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)$ where $\mathrm{ddh}_{1,1}$ represents the Her1-Her1 dimer dissociation rate.
(iv) Her1-Her1 Dimer Degradation $\left(\mathrm{ph}_{1,1} \rightarrow \varnothing\right): \operatorname{pdh}_{1,1} \cdot \mathrm{ph}_{1,1}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)$ where $\mathrm{pdh}_{1,1}$ represents the Her1-Her1 dimer degradation rate.

Combining (i)-(iv) we obtain the equation for the rate of change of Her1-Her1 dimer levels.

$$
\frac{\partial \mathrm{ph}_{1,1}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)}{\partial \mathrm{t}}=\operatorname{dah}_{1,1} \cdot \mathrm{ph}_{1}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right) \cdot \mathrm{ph}_{1}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)-\operatorname{ddh}_{1,1} \cdot \mathrm{ph}_{1,1}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)-\mathrm{pdh}_{1,1} \cdot \mathrm{ph}_{1,1}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)
$$

C.2. Her/Hes Dimer Levels

Similar steps to the above derivation can be used to derive the equations for Her1-Her7, Her1Hes6, Her7-Her7, Her7-Hes6 and Hes6-Hes6 dimer levels. We can combine the equations for Her1-Her1, Her1-Her7, Her1-Hes6, Her7-Her7, Her7-Hes6 and Hes6-Hes6 dimer levels in one equation.

$$
\begin{gathered}
\frac{\partial \mathrm{ph}_{\mathrm{i}, \mathrm{j}}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)}{\partial \mathrm{t}}=\mathrm{dah}_{\mathrm{i}, \mathrm{j}} \cdot \mathrm{ph}_{\mathrm{i}}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right) \cdot \mathrm{ph}_{\mathrm{j}}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)-\mathrm{ddh}_{\mathrm{i}, \mathrm{j}} \cdot \mathrm{ph}_{\mathrm{i}, \mathrm{j}}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)-\mathrm{pdh}_{\mathrm{i}, \mathrm{j}} \cdot \mathrm{ph}_{\mathrm{i}, \mathrm{j}}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right) \\
\text { where } \mathrm{i} \leq \mathrm{j} \text { and } \mathrm{i}, \mathrm{j} \in\{1,7,6\}
\end{gathered}
$$

In this equation $\operatorname{dah}_{\mathrm{i}, \mathrm{j}}, \operatorname{ddh}_{\mathrm{i}, \mathrm{j}}$ and $\operatorname{pdh}_{\mathrm{i}, \mathrm{j}}$ where $\mathrm{i} \leq \mathrm{j}$ and $\mathrm{i}, \mathrm{j} \in\{1,7,6\}$ represent the Her1-Her1, Her1-Her7, Her1-Hes6, Her7-Her7, Her7-Hes6 and Hes6-Hes6 dimer association, dissociation and degradation rates, respectively.

D. mRNA LEVELS

D.1. hes6 mRNA Levels

[Rate of Change in hes6 mRNA Levels] = [hes6 mRNA Synthesis] - [hes6 mRNA Degradation]
(i) Rate of Change in hes 6 mRNA Levels $=\frac{\partial \mathrm{mh}_{6}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)}{\partial \mathrm{t}}$.
(ii) hes6 mRNA Synthesis $\left(\varnothing \rightarrow \mathrm{mh}_{6}\right): \mathrm{msh}_{6}$ where msh_{6} represents the maximum hes σ mRNA synthesis rate. Since transcription of hes6 is not regulated by Notch signaling and $\mathrm{Her} / \mathrm{Hes}$ transcription factors in the posterior presomitic mesoderm, transcription rate is assumed to be constant $\left(\mathrm{msh}_{6}\right)$ in our model.
(iii) hes6 mRNA Degradation $\left(\mathrm{mh}_{6} \rightarrow \varnothing\right): \mathrm{mdh}_{6} \cdot \mathrm{mh}_{6}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)$ where mdh_{6} represents the hes6 mRNA degradation rate.

Combining (i)-(iii) we obtain the equation for the rate of change of hes 6 mRNA levels.

$$
\frac{\partial \mathrm{mh}_{6}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)}{\partial \mathrm{t}}=\mathrm{msh}_{6}-\mathrm{mdh}_{6} \cdot \mathrm{mh}_{6}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)
$$

D.2. her1 mRNA Levels

[Rate of Change in herl mRNA Levels] = [her1 mRNA Synthesis] - [her1 mRNA Degradation]
(i) Rate of Change in herl mRNA Levels $=\frac{\partial \mathrm{mh}_{1}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)}{\partial \mathrm{t}}$.
(ii) herl mRNA Synthesis $\left(\varnothing \rightarrow \mathrm{mh}_{1}\right)$:

maximum her 1 mRNA synthesis rate, critph $_{1,1}$, critph ${ }_{6,7}$ and critpd are DNA-binding dissociation constants for Her1-Her1, Her7-Hes6 and NICD, respectively. Also N represents all the neighbors of the $\mathrm{k}^{\text {th }}$ cell and nmh_{1} represents herl mRNA transcription time delay.

Form of Transcription Term:

Transcriptions of herl and her7 are repressed by Her-Her1 and Her7-Hes6 dimer proteins but activated by Notch signaling. The activity of Notch signaling is proportional to the levels of DeltaC protein.

In our model, we assume that transcription rate of herl is proportional to the ratio:

"DNA states free of repressors"

"Total DNA state"
"DNA states free of repressor" = "Vacant DNA" + "Activator (NICD)-bound DNA"
"Total DNA states" = "Vacant DNA" + "NICD-bound DNA" + "Her1-Her1 homodimer bound DNA" + "Her7-Hes6 heterodimer bound DNA"

Please note that in our model it is assumed that two Her1-Her1, Her7-Hes6 dimers bind to DNA as a tetramer and NICD, which is activated by DeltaC protein from six neighboring cells, bind as a monomer. Because of that, we square the terms for Her1-Her1 and Her7-Hes6 dimers but not DeltaC term.
(iii) herl mRNA Degradation $\left(\mathrm{mh}_{1} \rightarrow \varnothing\right): \mathrm{mdh}_{1} \cdot \mathrm{mh}_{1}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)$ where mdh_{1} represents the herl mRNA degradation rate.

Combining (i)-(iii) we obtain the equation for the rate of change of herl mRNA levels.

D.3. her1 and her 7 mRNA Levels

Similar steps to the herl derivation can be used to derive the equations for her 7 mRNA levels. We can combine the equations for herl and her 7 mRNA levels in one equation.

In this equation $\mathrm{msh}_{\mathrm{i}}$ and $\mathrm{mdh}_{\mathrm{i}}$ where $\mathrm{i} \in\{1,7\}$ represent the herl and her 7 mRNA max synthesis rate and degradation rate, respectively. critph ${ }_{1,1}$, critph $_{6,7}$ and critpd are DNAbinding dissociation constants for Her1-Her1, Her7-Hes6 and NICD, respectively. N represents
all the neighbors of the $\mathrm{k}^{\text {th }}$ cell and $\mathrm{nmh}_{\mathrm{i}}$ where $\mathrm{i} \in\{1,7\}$ represents herl and her 7 mRNA transcription time delay.

D.4. deltaC mRNA Levels

[Rate of Change in deltaC mRNA Levels] $=[$ deltaC mRNA Synthesis $]-$ [deltaC mRNA Degradation]
(i) Rate of Change in deltaC mRNA Levels $=\frac{\partial \mathrm{md}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)}{\partial \mathrm{t}}$.
(ii) deltaC mRNA Synthesis $(\varnothing \rightarrow \mathrm{md}): \operatorname{msd} \frac{1}{1+\left[\frac{\mathrm{ph}_{1,1}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}-\mathrm{nmd}\right)}{\operatorname{critph}_{1,1}}\right]^{2}+\left[\frac{\mathrm{ph}_{6,7}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}-\mathrm{nmd}\right)}{\mathrm{critph}_{6,7}}\right]^{2}}$ where msd represents the maximum deltaC mRNA synthesis rate. critph ${ }_{1,1}$ and critph $_{6,7}$ are DNAbinding dissociation constants for Her1-Her1 and Her7-Hes6. nmd represents deltaC mRNA transcription time delay.

Form of Transcription Term:

Transcription of deltaC is repressed by Her-Her1 and Her7-Hes6 dimer proteins. In our model, we assume that transcription rate of deltaC is proportional to the ratio:

$$
\frac{\text { "DNA states free of repressors" }}{\text { "Total DNA state" }}
$$

"DNA states free of repressor" $=$ "Vacant DNA"
"Total DNA states" = "Vacant DNA" + "Her1-Her1 homodimer bound DNA" + "Her7-Hes6 heterodimer bound DNA"

Please note that in our model it is assumed that two Her1-Her1 and Her7-Hes6 dimers bind to DNA as a tetramer. Because of that we square the terms for Her1-Her1 and Her7-Hes6 dimers.
(iii) delta C mRNA Degradation $(\mathrm{md} \rightarrow \varnothing): \operatorname{mdd} \cdot \operatorname{md}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)$ where mdd represents the deltaC mRNA degradation rate.

Combining (i)-(iii) we obtain the equation for the rate of change of hes 6 mRNA levels.

$$
\frac{\partial \mathrm{md}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)}{\partial \mathrm{t}}=\mathrm{msd} \frac{1}{1+\left[\frac{\mathrm{ph}_{1,1}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}-\mathrm{nmd}\right)}{\mathrm{critph}_{1,1}}\right]^{2}+\left[\frac{\mathrm{ph}_{6,7}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}-\mathrm{nmd}\right)}{\mathrm{critph}_{6,7}}\right]^{2}}-\mathrm{mdd} \cdot \operatorname{md}\left(\mathrm{c}_{\mathrm{k}}, \mathrm{t}\right)
$$

STOCHASTIC SIMULATIONS

Reactions and propensities used in stochastic simulations.

Reaction (for each cell)	Propensity (for each cell c_{k})
Reaction 1: $\mathrm{mh}_{1} \rightarrow \mathrm{ph}_{1}$ (Herl protein synthesis) Reaction 2: $\mathrm{ph}_{1} \rightarrow \varnothing$ (Her1 protein degradation) Reaction 3: $\mathrm{ph}_{1}+\mathrm{ph}_{1} \rightarrow \mathrm{ph}_{1,1}$ (Her1-Her1 dimer association) Reaction 4: $\mathrm{ph}_{1,1} \rightarrow \mathrm{ph}_{1}+\mathrm{ph}_{1}$ (Her1-Her1 dimer dissociation) Reaction 5: $\mathrm{ph}_{1}+\mathrm{ph}_{7} \rightarrow \mathrm{ph}_{1,7}$ (Her1-Her7 dimer association) Reaction 6: $\mathrm{ph}_{1,7} \rightarrow \mathrm{ph}_{1}+\mathrm{ph}_{7}$ (Her1-Her7 dimer dissociation) Reaction 7: $\mathrm{ph}_{1}+\mathrm{ph}_{6} \rightarrow \mathrm{ph}_{1,6}$ (Her1-Hes6 dimer association) Reaction 8: $\mathrm{ph}_{1,6} \rightarrow \mathrm{ph}_{1}+\mathrm{ph}_{6}$ (Her1-Hes6 dimer dissociation) Reaction 9: $\mathrm{mh}_{7} \rightarrow \mathrm{ph}_{7}$ (Her7 protein synthesis) Reaction 10: $\mathrm{ph}_{7} \rightarrow \varnothing$ (Her7 protein degradation) Reaction 11: $\mathrm{ph}_{7}+\mathrm{ph}_{7} \rightarrow \mathrm{ph}_{7,7}$ (Her7-Her7 dimer association) Reaction 12: $\mathrm{ph}_{7,7} \rightarrow \mathrm{ph}_{7}+\mathrm{ph}_{7}$ (Her7-Her7 dimer dissociation) Reaction 13: $\mathrm{ph}_{7}+\mathrm{ph}_{6} \rightarrow \mathrm{ph}_{6,7}$ (Her7-Hes6 dimer association) Reaction 14: $\mathrm{ph}_{6,7} \rightarrow \mathrm{ph}_{7}+\mathrm{ph}_{6}$ (Her7-Hes6 dimer dissociation) Reaction 15: $\mathrm{mh}_{6} \rightarrow \mathrm{ph}_{6}$ (Hes6 protein synthesis) Reaction 16: $\mathrm{ph}_{6} \rightarrow \varnothing$ (Hes6 protein degradation) Reaction 17: $\mathrm{ph}_{6}+\mathrm{ph}_{6} \rightarrow \mathrm{ph}_{6,6}$ (Hes6-Hes6 dimer association) Reaction 18: $\mathrm{ph}_{6,6} \rightarrow \mathrm{ph}_{6}+\mathrm{ph}_{6}$ (Hes6-Hes6 dimer dissociation) Reaction 19: $\mathrm{ph}_{1,1} \rightarrow \varnothing$ (Her1-Her1 dimer degradation) Reaction 20: $\mathrm{ph}_{1,7} \rightarrow \varnothing$ (Her1-Her7 dimer degradation) Reaction 21: $\mathrm{ph}_{1,6} \rightarrow \varnothing$ (Her1-Hes6 dimer degradation) Reaction 22: $\mathrm{ph}_{7,7} \rightarrow \varnothing$ (Her7-Her7 dimer degradation) Reaction 23: $\mathrm{ph}_{6,7} \rightarrow \varnothing$ (Her7-Hes6 dimer degradation) Reaction 24: $\mathrm{ph}_{6,6} \rightarrow \varnothing$ (Hes6-Hes6 dimer degradation) Reaction 25: $\mathrm{md} \rightarrow \mathrm{pd}$ (Delta protein synthesis) Reaction 26: pd $\rightarrow \varnothing$ (Delta protein degradation) Reaction 27: $\varnothing \rightarrow \mathrm{mh}_{1}$ (her 1 mRNA synthesis) Reaction 28: $\mathrm{mh}_{1} \rightarrow \varnothing$ (her 1 mRNA degradation) Reaction 29: $\varnothing \rightarrow \mathrm{mh}_{7}$ (her7 mRNA synthesis) Reaction 30: $\mathrm{mh}_{7} \rightarrow \varnothing$ (her 7 mRNA degradation) Reaction 31: $\varnothing \rightarrow \mathrm{mh}_{6}$ (hes6 mRNA synthesis) Reaction 32: $\mathrm{mh}_{6} \rightarrow \varnothing$ (hes6 mRNA degradation) Reaction 33: $\varnothing \rightarrow$ md (deltaC mRNA synthesis) Reaction 34: md $\rightarrow \varnothing$ (deltaC mRNA degradation)	

Transcription of her1, her 7 and deltaC mRNAs have been approximated by the following functions in stochastic simulations.

Genes	Transcription Term
herl	
her 7	
deltaC	$\mathrm{fd}=\mathrm{msd} \cdot \frac{1}{1+\left[\frac{\mathrm{ph}_{1,1}\left(\mathrm{c}_{\mathrm{k}}\right)}{\mathrm{critph}_{1,1}}\right]^{2}+\left[\frac{\mathrm{ph}_{6,7}\left(\mathrm{c}_{\mathrm{k}}\right)}{\mathrm{critph}_{6,7}}\right]^{2}}$
where N represents all the neighbors of the $\mathrm{k}^{\text {th }} \operatorname{cell}\left(\mathrm{c}_{\mathrm{k}}\right)$.	

