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Fig. S1. Quantification of orientation of hexagonal cells. (A) Orientation of a hexagonal cell 
is characterized by 〈cos6θj〉 (the average of cos6θj, where θ1-6 represents the angles of the edges 
belonging to the cell). The PD and AP oriented hexagons are colored blue and yellow, 
respectively. (A′) Hexagonal cells are color-coded by 〈cos6θj〉 in the control wing at 35 hours 
APF. Nonhexagonal cells are shown in black. The 〈cos6θj〉 map illustrates the segregation of 
hexagonal cell arrays. (B) Orientation of a cell shape anisotropy, φ, is defined by the angle of the 
longest axis of a fitted ellipse. The angle is defined between 0 and π. (B′) Cells shown in A′ are 
color-coded by cosφ. The segregation of hexagonal cell arrays is not clearly detected. The fly 
genotype is as described in the legend of Fig. 1. 
Fig. S2. Developmental changes in the distribution of inferred tension and the myosin 
subunit in the wing. (A-E) Patterns of the estimated tension at the stages indicated. In B, the 
arrows indicate the PD and AP edges. (A′-E′) The direction of each edge is classified (e.g. red 
class I for the PD edges and blue class III for the AP edges) and its estimated tension is plotted 
against its length. The longest axis of the stress ellipse represents the maximum stress direction 
of a group of cells. (A″-E′″) Images of the wing expressing MRLC-GFP under the control of a 
promoter of the MRLC gene (A″-E″) and a cell shape marker (Dα–catenin-TagRFP) (A′″-E′″) at 
the stages indicated. The yellow and blue arrowheads indicate the PD and AP edges, 
respectively. Actin-GFP did not show a strongly biased distribution (data not shown). (A″″-E″″) 
Quantification of the mean signal intensity of MRLC-GFP (bar, left y-axis) and the average 
length of the edges (line, right y-axis) for each angle class. (F) A wing at 24 hours APF stained 
for anti-Zipper (myosin heavy chain) and anti-DECadherin. The yellow and blue arrowheads 
indicate the PD and AP edges, respectively. Zipper is enriched on the PD edges, as is MRLC-
GFP. Only a low level of phosphor-myosin was detected (data not shown). (G) The MRLC-GFP 
signal intensity of each edge (arbitrary units) is plotted against its length in each angular class for 
data shown in B″. (H) The correlation between myosin and the edge length of the class III edges 
is shown. The number of samples examined is indicated. Class I, II and IV edges had similar 
values to class III edges (data not shown). The fly genotypes are as described in the legend of 
Fig. 1 (A-E,G,H), and DEcadherin-GFP knock-in (F). Scale bars: 20 μm (A,A″) and 5 μm (F). 

Fig. S3. Statistical analysis of the angular bias of inferred tension, edge length and 
MRLC signal intensity. (A) The anisotropy of the MRLC-GFP signal intensity is represented 
by RS, RS〈s〉ei2Θ = 〈sei2θ〉 - 〈s〉〈ei2θ〉, where sij and θij (0 ≤ θij < π) are the MRLC-GFP signal 
intensity and the angle of the contact surface between the ith and jth cells, respectively. RS 
decreases if the signal intensity is uncorrelated with respect to the orientation of the edges. The 
anisotropy of the inferred tension (RT) and that of the edge length (RL) were evaluated using the 
same procedures. See supplementary material Fig. S4 for their statistical significance. (B-B″) 
The anisotropy of the inferred tension (RT; B), the length of the edge (RL; B′) and the MRLC-
GFP signal intensity (RS; B″) were plotted [red: wing (data shown in Fig. S2); blue: scutum]. The 
number of samples examined is indicated. The fly genotype is as described in the legend of Fig. 
1. 
Fig. S4. Statistical significance of the angular bias of inferred tension, edge length and 
MRLC signal intensity in the wing. (A) A bootstrap method for evaluating P values. Briefly, 
starting from the observed data set {sij,θij} (red lines), we generated a bootstrap sample {s'ij,θij} 
by randomly assigning a signal intensity to each edge from {si} and calculating RS. Repeating 
this process 10,000 times, we obtained the distribution for the bootstrap samples (green curve). 
(B-F″) Data shown in Figs S2, S3 were analyzed to check the statistical significance by 
evaluating P values using a bootstrap method. We obtained a distribution for RS. RT, RL, and RS 
for the observed data for the wing at various developmental stages (lines), plotted together with 
their distribution for the bootstrap samples (green curves; B-F, B′-F′ and B″-F″, respectively). 
RT, RL, and RS are normalized to their mean values. In each figure, the statistical significance of R 
is represented by colored lines (red: P<0.01; gray: P≥0.01). Inset: the directions of RT, RL, and RS 
are plotted (red: P<0.01; gray: P≥0.01). RS was not polarized toward a particular direction (i.e., 
bias direction ΘS) at 13-14 hours APF (inset in B″). However, at 16.5-23 hours APF, all of the 
samples were aligned parallel to the PD axis (insets in C″,D″). They then gradually separated at 
later stages (insets in E″,F″). A bootstrap test indicated that the RS of almost all of the samples 
was statistically significant at 16.5-23 hours APF (C″,D″). By contrast, more gray lines 
representing P≥0.01 can be seen at other stages (B″,E″,F″). 

Fig. S5. Cell junction tension measured by response to laser ablation of single cell contact 
surface. (A-E′) The response to laser cutting of single cell contact surface at the stages indicated 
was examined as was previously reported (Aigouy et al., 2010; Ishihara and Sugimura, 2012). 
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Each circle represents one ablated edge plotted on a 2D plane according to its length and 
direction at different stages. 0 and π correspond to the PD direction (see the number of angle 
classes). The color of the circle indicates the initial velocity of vertices, which was measured by 
the displacement of vertices 16 seconds after laser irradiation. For edges of a similar length, 
displacement was larger at the PD edges than at the AP edges at every stage, except at 13-14 
hours APF. These developmental changes were also observed when we quantified the 
displacement of the vertices at 71 seconds. The number of edges analyzed is shown in the upper 
right-hand corner. (D′,E′) The tension of an edge was estimated from image data just before 
cutting the edge as was done in Ishihara and Sugimura, 2012. The inferred tension plotted 
against Vmax of the vertices in wings at 25.5-27.5 hours APF (D′) and 30-32 hours APF (E′). The 
correlation coefficient was 0.80 (25.5-27.5 hours APF) and 0.60 (30-32 hours APF). Results of 
the analysis at 16.5-18.5 hours APF were published previously (Ishihara and Sugimura, 2012). 
The fly genotype is as described in the legend of Fig. 1. 

Fig. S6. Developmental changes in the anisotropy of global stress. (A) Developmental 
changes in the inferred normal stress difference σA ≡ (σxx – σyy)/2 in control wings. The number 
of samples examined is indicated. (B) The inferred σA plotted against Vx – Vy measured by global 
ablation of tissue (as in Fig. 2F and Movies 1, 2) for wings at 22 hours APF (red), 26 hours APF 
(black), 30 hours APF (magenta) and scutum (blue). σA was calibrated by the average Vmax of the 
vertices after cutting single cell contact surface at corresponding stages. The correlation 
coefficient was 0.88 with calibration and 0.73 without calibration. The fly genotype was 
DEcadherin-GFP knock-in. 
Fig. S7. Anisotropic stress promotes hexagonal packing. (A-D) In addition to cutting the wing 
by forceps as was done in Figs 3 and 4, we also employed a different way of relaxing tissue 
stretch; a two-photon laser cut the wing along the anterior cross vein at 23.5-24 hours APF. 
(A,B) Images of pupal wings at 34.5-35.5 hours APF. In B, the wing was severed by a 
femtosecond laser at 23.5 hours APF. The percentage of hexagonal cells was: 72.8 % (A) and 
57.1 % (B). (C) Quantification of the fraction of hexagonal cells in the control and cut wings. 
(D) The average value of 〈cos6θj〉 in each wing or wing cut at 23.5-24 hours APF is calculated, 
and mean ± s.d. among samples at each developmental stage is plotted. The fly genotype is as 
described in the legend of Fig. 1. 

Fig. S8. Directional bias in stress is crucial for hexagonal packing in a numerical 
simulation of cell rearrangement. (A) Mechanical processes in a cell. Currently, three 
processes are considered to underlie pressure and tension: (1) area elasticity, (2) cell adhesion 
and (3) contraction. Each process can be expressed as a form of potential energy, and 
minimization of the potential is expected to determine the geometry of the cells. A and L are the 
area and peripheral length of a cell at the plane of the adherens junction, respectively. l is the 
length of the contact surface between the cells. (B) Time evolution of the fraction of hexagonal 
cells for noise intensity z = 1, 10, 30 and 50%. The results of the simulations under no stretch, 
isotropic stretch and horizontal stretch are indicated with green, blue and red lines, respectively. 
The parameters were set as follows: 

� 

˜ σ 0 = 0.12 ; 

� 

˜ Λ = 0.04 , and 1⁄τ = 0.1 (see equations S2-2 
and S2-5 in Appendix S1). (C) Fractions of hexagonal cells at t = 2000 in the numerical 
simulations are plotted against noise intensity (z) for several values of τ ( σ 0 = 0.12 ) (n=8 for 
each set of parameters). The results of the simulations under no extrinsic force, isotropic stretch 
and horizontal stretch are indicated with squares, crosses and circles, respectively. (D,E) Results 
of simulations under (D) isotropic and (E) horizontal stretch. Left: the newly formed edges 
through cell-cell intercalation are shown by the magenta lines. Right: angular distribution of the 
newly formed edges (n=20 for each condition). 

Fig. S9. The RNAi against sqh results in the excess shear deformation of wing cells. (A,B) 
Dα-catenin-TagRFP images of control wing (A) and wing expressing a dsRNA targeting sqh that 
encodes MRLC (B). Yellow dots label corresponding cells. Control and sqh RNAi embryos and 
larvae were raised at 21°C and third instar larvae were switched to 29°C to induce the expression 
of dsRNA against sqh. After 24 hours, white pupae were picked for analysis. Time-lapse 
imaging was conducted at 21-22 hours APF at 29°C, which corresponds to ~24-25 hours APF at 
25°C. In B, excess shear deformation of cells was observed. Over the twenty minutes 
observation shown (B), and in the 1-hour time-lapse movie (not shown), cell rearrangement was 
suppressed. When embryos and larvae were raised at 21°C and white pupae were switched to 
29°C, excess shear deformation of cells was not observed, and cell rearrangement was biased 
along the PD axis (refer to the main text). The decrease of MRLC level in the sqh RNAi flies 
was confirmed (data not shown). (C) Mechanical force balance in the Drosophila pupal wing. 
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The intrinsic cell junction tension generated by myosin resists the extrinsic tissue stretch. 
Inferred tension and myosin signal intensity were negatively correlated with the length of cell 
contact surface in each angle class (supplementary material Fig. S2A′-E′,G,H) as expected from 
the force-generating property of myosin. On the other hand, the extrinsic force elongates cell 
contact surfaces. The fly genotypes were patched-gal4, tubP-gal80ts/sqhp-sqhGFP, UAS-Dα–
catenin-TagRF; +/+ (A), and patched-gal4, tubP-gal80ts/sqhp-sqhGFP, UAS-Dα–catenin-
TagRF; UAS-sqh dsRNA/+ (B). (C) Scale bar: 20 μm (B). 

Fig. S10. Temporal changes in the anisotropy of local cell stress during hexagonal cell 
packing. (A,B) The developmental changes in local cell stress. Time-lapse data obtained from 
23.5 to 30.5 hours APF were extracted at 3-minute intervals. (A) Each cell is differentially 
colored by its anisotropy of local cell stress (color bar; a/b in Fig. 5A). The coefficient of 
variation (CV; the standard deviation/the mean) of the aspect ratio of local cell stress ellipse 
among cells #1-#4 is indicated at the bottom right of each panel. (B) The aspect ratio of local cell 
stress ellipse is quantified before and after the PD intercalation of cells. Its CV among four cells 
that are involved in the PD intercalation is plotted. (C) Balance of the extrinsic forces (blue 
arrows) and intrinsic contracting forces (pink arrows). An edge with tension T, length l and angle 
θ contributes to Nxx as ~ Tlcos2θ/αe along the x-axis, where ae represents an area that the edge 
supports. It indicates that the tension along the horizontal edges (top) is able to more efficiently 
counteract the horizontal stretch than the tension of the vertical edges (bottom). It is thus 
suggested that the PD intercalation of cells (i.e., an increase of the PD edges) lowers the average 
magnitude of tension on PD edges. The fly genotype is as described in the legend of Fig. 1. Scale 
bar: 5 μm (B). 

Fig. S11. In flamingo (fmi) RNAi wing, hexagonal packing proceeded normally until 27.5 
h APF, but was disrupted afterwards. (A-A″) The anisotropy of the inferred tension (RT; A), 
the length of the edge (RL; A′), and the MRLC-GFP signal intensity (RS; A″) were plotted [red: 
wing (data shown in Fig. S2), magenta: fmi RNAi wing]. The number of samples examined is 
indicated. Inferred tension, myosin localization and cell elongation exhibited normal 
developmental changes in fmi RNAi wings. The standard deviations of the magnitude (c in Fig. 
5A) and anisotropy (a – b in Fig. 5A) of inferred local cell stress at 25.5-27.5 hours APF were 
0.095±0.013 and 1.10±0.19 in control wing, and they were 0.095±0.013 and 1.17±0.14 in fmi 
RNAi wing. The standard deviation of inferred tension at 25.5-27.5 hours APF was 0.158±0.020 
and 0.168±0.014 in the control and fmi RNAi wings, respectively. The PD biased localization of 
myosin was observed in two other conditions, in which PCP was disputed: a homogeneous 
viable null allele of prickle (prickle1) (Gubb et al, 1999) and overexpression of fat by ptc-gal4 
(Ma et al., 2003; Matakatsu and Blair, 2004) (data not shown). (B,C) Developmental changes in 
cell packing and alignment are compared between control and fmi RNAi wings. The number of 
control flies examined is indicated. (B) The fraction of hexagonal cells in control (red) and fmi 
RNAi (magenta) wings. (C) The orientation of the edges of each hexagonal cell is quantified by 
〈cos6θj〉 as in Fig. 1G, and the average of the values among samples is plotted (red: control, and 
magenta; fmi RNAi). Genotype of control fly is as described in the legend of Fig. 1, and that of 
the fmi RNAi fly is sqhp-sqhGFP, apterous-gal4/sqhp-sqhGFP, UAS-Dα–catenin-TagRFP; 
UAS-fmi dsRNA/+. 

Fig. S12. Summary of tissue mechanics and cell-level dynamics that underlie hexagonal 
cell packing. (A) Tissue mechanics, cell-level dynamics and hexagonal cell packing in the 
Drosophila pupal wing (Classen et al., 2005; Aigouy et al., 2010; this study). Strong anisotropy 
of tissue stress is present until early phase Ⅱ, when the anisotropies of cell junction tension and 
myosin have started decreasing. This strong tissue stress anisotropy triggers the directional 
alignment of hexagonal cells along the tissue-stretching direction. (B) Mechanical regulation of 
hexagonal pattern formation connecting molecular, cellular and tissue (cell-population) 
dynamics. Arrow 1: Myosin controls the mechanical properties of a cell and generates 
contracting tension to trigger junction remodeling. Arrow 2: Directional cell rearrangement 
promotes hexagonal packing. Arrow 3: The stress field (i.e., the maximum stress direction) of a 
tissue provides directional information for the alignment of individual cells. Arrows 3 and 4: A 
cell senses the stress field of the tissue and modifies its distribution of myosin. 

Movie 1. Ablation of a group of cells in the wing. A wing at 22 hours APF. Anterior is up 
and proximal is left. Cells at the center were ablated. The anisotropic extension of cell group 
contour confirmed the PD bias of global stress in the wing. Time label of the movie is: 14", -4", 
4", 14", 24", … , 214" (laser irradiation was at 0 seconds). The fly genotype is DEcadherin-GFP 
knock-in. Scale bar: 20 μm. 
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Movie 2. Ablation of a group of cells in the scutum. A scutum at 22 hours APF. Anterior is 
left. Cells at the center were ablated. Note that the anisotropy in the outward velocity of cells was 
smaller in the scutum than in the wing (compare Movies 1 and 2). The time label of the movie 
and fly genotype are as described in the legend of Movie 1. Scale bar: 20 μm. 

Movie 3. Temporal dynamics of the inferred tensions. Time-lapse images were taken from 
23.5-30.5 hours APF, and data from 25-26 hours APF were extracted at 3-minute intervals. The 
arrowheads and arrows point to the AP and PD edges, respectively. The fly genotype is as 
described in the legend of Fig. 1. 



Fig. S1. Quantification of orientation of hexagonal cells. 



Fig. S2. Developmental changes in the distribution of inferred tension and the myosin subunit in the wing.



Fig. S3. Statistical analysis of the angular bias of inferred tension, edge length and MRLC signal intensity.



Fig. S5. Cell junction tension measured by response to laser ablation of single cell contact surface.
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Fig. S6. Developmental changes in the anisotropy of global stress.
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Fig. S7. Anisotropic stress promotes hexagonal packing. 



Fig. S8. Directional bias in stress is crucial for hexagonal packing in a numerical simulation of cell rearrangement.

Fig. S9. The RNAi against sqh results in the excess shear deformation of wing cells.



Fig. S10. Temporal changes in the anisotropy of local cell stress during hexagonal cell packing.

Fig. S11. In flamingo (fmi) RNAi wing, hexagonal packing proceeded normally until 27.5 h APF, but was disrupted afterwards. 

B C

Stage [hr APF]

-0.2

-0.1

 0

 0.1

 0.2

 0.3

13-
 13.5

16.5-
 18.5

21-
 23

25.5-
 27.5

30-
 32

34.5-
 35.5

Fr
ac

tio
n 

of
 h

ex
ag

on
s

Av
er

ag
e 

<c
os

6 
 >

 
θ

control21
10  

26
 7 

21
 8  

23
 9  

25
 9  

20
10  fmi RNAi

21
10  

26
 7 

21
 8  

23
 9  

25
 9  

20
10  

control
fmi RNAi

 0

 0.2

 0.4

 0.6

 0.8

13-
 13.5

16.5-
 18.5

21-
 23

25.5-
 27.5

30-
 32

34.5-
 35.5

Stage [hr APF]

* **

*
**

p = 9.3e-04

p =1.6e-03 *
**

p = 9.3e-03

p = 1.3e-04

* **

A A� A�

Stage [hr APF]

13-
14

16.5-
18.5

25.5-
27.5

21-
23

30-
32

0

0.02

0.04

0.06

0.08

RT

Stage [hr APF]

13-
14

16.5-
18.5

25.5-
27.5

21-
23

30-
32

0

0.04

0.08

0.12

0.16

RL

0

0.04

0.08

0.12

Stage [hr APF]

13-
14

16.5-
18.5

25.5-
27.5

21-
23

30-
32

RS

21
10  

26
 7 
 

21
 8 
 

23
 9 
 

25
 9 
 

21
10 
 

26
 7 

21
 8 

23
 9 

25
 9 
 

21
10 

15
 7 
 

16
 8 

16
 9 
 

16
 9 

Inferred tension Edge length MRLC-GFP

control
fmi RNAi

control
fmi RNAi

control
fmi RNAi

phase I phase II phase I phase II phase I phase II

phase I phase II phase I phase II



Fig. S12. Summary of tissue mechanics and cell-level dynamics that underlie hexagonal cell packing.
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Movie 1. Ablation of a group of cells in the wing. A wing at 22 hours APF. Anterior is up and proximal is left. Cells at the center 
were ablated. The anisotropic extension of cell group contour confirmed the PD bias of global stress in the wing. Time label of the 
movie is: 14”, -4”, 4”, 14”, 24”, … , 214” (laser irradiation was at 0 seconds). The fly genotype is DEcadherin-GFP knock-in. Scale 
bar: 20 μm.

Movie 2. Ablation of a group of cells in the scutum. A scutum at 22 hours APF. Anterior is left. Cells at the center were ablated. Note 
that the anisotropy in the outward velocity of cells was smaller in the scutum than in the wing (compare Movies 1 and 2). The time label 
of the movie and fly genotype are as described in the legend of Movie 1. Scale bar: 20 μm.

Movie 3. Temporal dynamics of the inferred tensions. Time-lapse images were taken from 23.5-30.5 hours APF, and data from 
25-26 hours APF were extracted at 3-minute intervals. The arrowheads and arrows point to the AP and PD edges, respectively. The fly 
genotype is as described in the legend of Fig. 1.

http://www.biologists.com/DEV_Movies/DEV094060/Movie1.mov
http://www.biologists.com/DEV_Movies/DEV094060/Movie2.mov
http://www.biologists.com/DEV_Movies/DEV094060/Movie3.mov
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Appendix 1 by Sugimura and Ishihara. 
 
 
§1. Force-inference method 
1-A Force inference of pressures and tensions 
The algorithm for inferring mechanical forces in a tissue was reported by Ishihara and 

Sugimura, 2012. In the method, an input is a segmented image of epithelial tissue 

represented by polygonal tile. Deviations from 120° angles between cell contact 

surfaces indicate heterogeneities in tensions and pressures, which can be found by 

solving a linear inverse problem (it is underdetermined, but can be solved under 

reasonable physical assumptions such as positivity of cell junction tensions). The 

difference of pressures among cells (ΔPi ) and tensions along cell contact surfaces (Tij) 

are inferred up to a scaling factor; the estimated tensions and pressures are related to 

true ones as ΔPi = cPi
true + P0 and Tij = cTij

true, where c is a scaling factor and P0 is the 

baseline value of the pressure. P0 is set so that the sum of ΔPi is zero. Scaling factor c 

is set to satisfy that the average of estimated tensions is unity. In the developmental 

stages analyzed in this study, the average Vmax of the vertices after cutting single cell 

contact surface did not change extensively; the average Vmax was 0.153 ± 0.054 

µm/sec at 25.5–27.5 h APF (n = 21) and 0.132 ± 0.044 µm/sec at 30–32 h APF (n = 

24) (Fig. S5D1, E1). 

 

1-B Global tissue stress and local cell stress 
Global (tissue) stress tensor N is given by the following matrix that integrates all cell 

pressures and tensions (see Fig. 1E for schematic representations) (Batchelor, 1970; 

Ishihara and Sugimura, 2012).  

Nµν = − AiPi
i:cell
∑ δµν + Tij

ij :edge
∑ lij

µlij
v

lij

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Ai
i:cell
∑

 
Here, (μ,ν) are indices for (x,y) and δμν is Kronecker’s delta. Ai is the area of the ith 

cell in the plane of the adherens junction, and lij = (lij
x, li

yν) is a vector representation of 

the edge shared by the ith and jth cell. The global stress tensor is symmetric and thus 

is represented as a stress ellipse (insets in Figs. 2A3–C3, 4A3–C3). 
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We defined the local cell stress tensor by Nμν
i= (−ΔPi Aiδµν+ Σj Tij lij

μ lij
ν ⁄ 

||lij||)/Ai for individual cells (Ishihara and Sugimura, 2012) (see Fig. 1E for schematic 

representations). i is the index of the cell, Ai and ΔPi are the area and the estimated 

relative value of the cell pressure, respectively, and Tij is the estimated tension of cell 

contact surface between the ith and neighboring jth cell. Vector lij = (lij
x, lij

y) represents 

the relative position of two endpoints of the cell contact surface, and ||lij|| is its length. 

μ and ν are indices of x and y. Σj represents taking the summation on the cell contact 

surfaces between the ith and adjacent cells. The obtained tensors are represented by 

cross symbols for respective cells. Anisotropy of local stress is measured by a − b or 

a/b, where a and b are eigenvalues of the local cell stress tensor. The direction of 

global stretch is obtained by the eigenvector of the global stress tensor. Local cell 

stress along the global stress direction of the tissue is measured from the local cell 

stress tensors and the direction of global stretch. 

 

§2. Numerical simulation 

2-A Implementation of numerical model 
Here we describe details of implementations of the numerical simulations. To 

simulate rearrangement of cells, we employed a vertex model with the following form 

for potential energy (Honda, 1983; Graner and Sawada, 1993; Ouchi et al., 2003; 

Mofrad and Kamm, 2006; Farhadifar et al., 2007; Käfer et al., 2007; Lecuit and Lenne, 

2007; Rauzi et al., 2008): 

,        (eq. S2-1) 

.     (eq. S2-2)  

Ai and Li represent the area and peripheral length of the ith cell at the plane of the 

adherens junction, respectively. lij is the length of the contact surface between the ith 

and jth cells. Ai, Li, and lij are determined by positions of the vertices {xi} which 

define the geometry of cells. In eq. S2-2, the first term represents the area elasticity of 

a cell and is given by Uar(A) = (K/2)(A – A0)2. The second term Ulin(l) = σl represents 

line tension (sum of cell adhesion and contracting force), and the third term Ucor(L) = 

   
U {x i},λx ,λy( ) =U0 x i{ }( ) − λxTx (t) − λyTy (t)

  

� 

U0 x i{ }( ) = Uar (Ai)
i:cell

∑  + U lin (lij)  +
[ij]:edge

∑ Ucor (Li)
i:cell

∑
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(Λ/2)L2 represents cortical elasticity (Fig. S8A). In eq. S2-1, tissue stretch is 

introduced with the last 2 terms (Andersen, 1980; Frenkel and Smit, 2001), where λx 

and λy are new variables for parameterizing the system size as Lx = λxL0
x and Ly = 

λyL0
y. Tx(t) and Ty(t) are applied stresses along the x- and y-axes, respectively. The 

ordinary differential equations to be solved are derived as follows. 

  

 
dxi

dt
= −λx

2 Fi
x +

Tx − T̂xx

λx

xi

 
dyi

dt
= −λy

2 Fi
y +

Ty − T̂yy

λy

yi

 
dλx

dt
= Tx − T̂xx

 
dλy

dt
= Ty − T̂yy

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

    

(eq. S2-3) 

Here, F is given by -∂U0/∂X and 

� 

ˆ T  is given by the following equation. 

  

� 

ˆ T µν = K(Ai − A0)Ai
i:cell
∑ + σij + Λ Li + Lj( )( ) lij

µ lij
ν

l ij[ij]:edge
∑    (eq. S2-4) 

With these equations dU/dt ≤ 0 is assured when T(t) = (Tx(t), Ty(t)) is constant. In the 

final steady state, Fi = 0 for all i and 

� 

T = ˆ T  were satisfied as expected. In this 

implementation, introduced variables λx and λy that involve the global geometry of the 

system have no intuitive physical interpretation, but this methodology is widely used 

due to their technical advantages for simulating the dynamics under the specified 

stress environment with the periodic boundary condition (Frenkel and Smit, 2001). 

In addition, fluctuation is included into the simulations so that the system is 

not trapped in a local minimum. One of the convenient ways is to add noise terms to 

line tension in the following form: 

   
σ ij = −τ −1 σ ij − σ 0( ) + zσ 0 2 τξij(t)     (eq. S2-5) 

Here, ξij(t) represents white Gaussian noise with 〈ξij(t)〉 = 0 and 〈ξij(t)ξkl(t')〉 = δij,klδ(t – 

t'). σij fluctuates around its average σ0. τ determines the time scale of the fluctuation, 

and z controls its magnitude as z = 〈|σij −σ0|〉/σ0.  
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The stochastic differential equations were numerically solved where 

junctional remodeling (T1 process) was allowed. To simulate the process of cell 

rearrangement without an extrinsic force (Fig. 3H, upper left), both Tx(t) and Ty(t) 

were set to 0.10 (an offset value) for all t. For the isotropic stretch (Fig. 3H, upper 

right), both Tx(t) and Ty(t) were set to 0.10 for 0 < t < 50.0, and then were increased 

rapidly according to Tx(t) = Ty(t) = 0.10 + 0.05 × (t – 50.0) until they reached Tx(t) = 

Ty(t) = 0.20 at t = 70.0, and were constant afterward. For the anisotropic stretch along 

the x-axis (Fig. 3H, below), Ty(t) = 0.10 for all t and Tx(t) was set as for the isotropic 

stretch condition. 

Among the parameters of the potential U0, the values of K and A0 are 

arbitrary by choosing the proper scales for physical dimensions (length and force); 

they were set as K = 100.0 and A0 = 1.0/256.0 for this study. In the model, as the 

derivative of Ucor with respect to l shows, the coefficient of the quadratic term Λ is 

responsible for the length dependence of the tension at an edge. We found that Λ 

should be finite positive to reproduce the experimentally observed negative 

correlation between tensile force and edge length in the numerical simulations (Rauzi 

et al., 2008). In Figs. 3H, I, S8, we set σ0 and Λ to 

� 

˜ σ 0 = σ0 KA0
3 / 2 = 0.12  and 

 
Λ = Λ KA0 = 0.04 , as previously reported for the Drosophila wing disc, to reproduce 

the observed distribution of n-sided polygons and their areas after cell division 

(Farhadifar et al., 2007). Using these values, edge length and tension had a reasonable 

negative correlation. 

 Eventual fractions of hexagonal cells were nearly same for the 3 conditions 

at large and slow noise (z = 50% and τ−1 = 0.1 in Fig. S8C). However, in most of the 

parameter regions examined, the eventual fraction of hexagonal cells under horizontal 

stretch was significantly larger than that under isotropic stretch (Figs. 3H–J, S8B). In 

addition, parameter dependence on τ differed among the 3 conditions; with large z, 

the fraction of hexagonal cells under no or isotropic stretch depended on τ (squares 

and crosses in Fig. S8C), whereas that under horizontal stretch did not (circles in Fig. 

S8C). 

 

2-B Changes in cell shapes 
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Deformation of a tissue consists of a change in the shapes of constitutive cells and/or 

cell-cell intercalations (Blanchard et al., 2009). At an early phase of the simulations, 

application of isotropic or horizontal stretch triggered expansion or directional 

elongation of the cells, respectively (see t = 50–250 in Fig. 3H, upper right and 

below). Under an isotropic stretch, expansion of the cells reached a plateau due to 

their area elasticity, while cell intercalation among the cells was not biased and newly 

formed cell-cell surfaces were distributed isotropically (Fig. S8D). Therefore, the 

shape of the entire tissue changed only slightly between t = 250 and 2000 (Fig. 3H, 

upper right). On the other hand, under a horizontal stretch, biased cell intercalation 

caused formation of new cell-cell surfaces in the horizontal direction (Fig. S8E). 

Elongation of the constituent cells after t = 250 was not evident; hence, the biased 

intercalations were responsible for horizontal elongation of the tissue at this phase 

(see t = 250–2000 in Fig. 3H, below). 
 

2-C Numerical Simulation with biased tensile parameter 
Numerical model with biased tensile parameter was simulated as follows (Fig. 6A2). 

The model is obtained by replacing the line tension parameter σ in (eq. S2-2) by σ (1 

− μcos2θ), where μ represents the magnitude of anisotropy. θ is the direction of the 

cell contact surface, thus the vertical contact surfaces in the figure have larger tension 

than horizontal ones. The system was under the isotropic pressure environment and 

we set Tx = Ty = 0.10. Λ and μ are controlled to obtain the results shown in Fig. 6B–D. 

The other parameters are set the as same as those described in §2-A.  

 In both tissue stretch and biased tensile parameter models, the anisotropy of 

cell shape (RT) correlated less with the fraction of hexagonal cells than the orientation 

of cell contact surface (〈cos6θj〉) did (Fig. 6B–D). Therefore, although wing cells are 

elongated along the PD axis by the hinge constriction before reordering cell packing 

(~24 h APF) (Fig. 2A1, 2D2), it is suggested that cell elongation affects hexagonal 

cell packing less significantly than alignment of hexagonal cells. 
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