

Fig. S1. K-means clustering algorithm. (A) Map of local average directions (green bars) of the centrosome-nucleus
axes in the embryonic heart shown in Fig. 3D. (B-B00) Summary of the main steps of the K-means clustering algorithm,
with K (number of regions)=3 and using the planar components of the axes. (B) Three seeds (green, red, yellow) are
chosen randomly among the raw data set (blue axes); (B9) the three regions, outlined by colored dotted lines, are grown
around these seeds by progressively allocating the neighbors with an axis most parallel to that of the seed; (B0) at the end
of the process, a partition of the whole data set into connex regions is reached; (B-) new seeds (in black) are computed
for each region, by finding the cell with the axis closest to the average direction of the region (green, red, yellow double
arrows). (B-9) This leads to a new iteration and, finally, after a few thousand iterations, to a stable optimal partition.
(C,C9) When varying the parameter K, we obtained different partitions. Examples of two different partitions, both with
K=6, and 5000 iterations, but different initial seeds. Dots of the same color belong to the same region with the best axial
coordination. Although the algorithm does not strictly converge, when repeating the procedure with different initial seeds,
it leads to very similar partitions for a given value of K (regions numbered 1 to 6). (C0) Schematic in which a region is the
intersection of the two corresponding regions of the partitions C and C9. (D) Bootstrap method for evaluating the threshold
of the eigenvalue E

1
, above which axes of a distribution were considered sufficiently parallel. As an example, the

distribution of 1000 random regions of 50 axes from the data set of A is shown. A threshold is defined such that only 5%
of the random regions have an eigenvalue E

1
 above it: here E

1(5%)
=30 for regions of 50 axes. (E) Influence of the parameter

K (color coded) on the characteristics of regions generated by the K-means clustering algorithm on a data set of 347 axes
(for each K-value, the algorithm was run 100 times, with 100 iterations at each run). Lower K tended to produce larger
regions with a lower degree of axial coordination (E

1
/E

1(5%)
). (F) Output map of the clustering algorithm after selection of

the regions with the best axial coordination, independently of K. These three best-oriented regions are color coded on the
map of the local average directions per box (green). Further validation by a statistical test is required and shown in Fig.
3D. 3D maps are projected on the xy plane.

Fig. S2. Automatic detection of the centrosome-nucleus axes of cell polarity. (A-A-) Example image of embryonic
myocardial cells, with labeled nuclei (A and blue in A-), membranes (A9 and red in A-) and centrosomes (A0 and white
in A-). Scale bar: 10 mm. (B,B9) Filtered images of the nuclei (B) and membranes (B9) that are used as input for the
segmentation process. (B0) Yellow arrows indicate neighboring cells with anti-parallel orientations of their centrosome-
nucleus vectors. (C-C-) Results of the automatic segmentation of the nuclei (C and magenta in C-), the cells (C9 and
red in C-) and the centrosomes (C0 and white in C-). (D) For the automatic pairing between nuclei and centrosomes,
the nearest voxel belonging to a nucleus (n, magenta) was searched within a box (yellow) of about one cell diameter
wide (11311311 mm) around each centrosome (c, white). The 3D centrosome-nucleus axis (v

x
, v

y
, v

z
), shown as a

green double-headed arrow, was computed from the centroids (x
c
,y

c
,z

c
) and (x

n
,y

n
,z

n
) of the centrosome and nucleus,

respectively. (E,E9) In a scan of 594 nuclei (E), a 3D data set of 250 centrosome-nucleus axes was extracted. Each blue
bar corresponds to the axis of one cell (E9). LV, left ventricle; RV, right ventricle.

Appendix S1. MATLAB code of the K-means clustering algorithm.

The input of this code is an N x 6 array, called “data”, where N is the number of axes to be

clustered and the 6 columns contain the location coordinates of each axis (X, Y, Z) and the

coordinates of its unit vector (Vx, Vy, Vz). An N x 2 array, called “Table” should also be given as

input, containing for each region size (from 1 to N: first column) the 5% threshold E1 eigenvalue

(second column), as computed by the bootstrap method. The aim of the clustering algorithm is to

minimize, for a given value of “RegionNumber” (K in the main text, defining the number of

regions in the partition), the total approximation error, i.e. the sum of individual deviations of

axes from the average direction of their region.

The main output of this code is “SignifRegionsLeagueTable”. This is an array listing all the

significant regions found by the algorithm, i.e. regions containing more than “SizeLimit” axes

(the minimum size according to Ringrose and Benn, 1997) and having an E1 eigenvalue above the

5% threshold. For each region (one per line), this table gives the E1 eigenvalue (column 1), how

many times this region was found (column 2), the size of the region (column 3), the eigenvector

V1 of the region (columns 4-6) , and the list of all axes (identified by their rank in the “data”

array) in the region (column 7 onward).

For the searches presented in the main text we ran this algorithm with various values of the

parameter “RegionNumber” (K), and added the “SignifRegionsLeagueTable” from these

successive runs before sorting the regions according to their E1 eigenvalue. The range of values

of K is between K=2 up to a value for which the algorithm can no longer find regions containing

“SizeLimit” or more points. For typical data sets, in which the number of axes was between 200

and 400, and “SizeLimit” = 50, the maximum K value was 7 or 8.

The algorithm first creates a list of the “NeighborNumber” (NN) nearest neighbours of each

data point, where NN is chosen empirically as the smallest number allowing all the data points to

be allocated to a region at the end of the clustering process. Typically, for our data sets, NN=7

proved sufficient. K seeds are then randomly chosen among the data points. A queue of length

K*NN is then created including all the neighbours of the K seeds, sorted in ascending order of

deviation of their axis from that of the seed. This queue is used to allocate each data point to one

of the K regions: the first point in the queue is allocated to the region of the neighbouring seed

and deleted from the queue; all the neighbours of this point are then added at the end of the

queue. With this addition at the end, independently of the orientation of the new neighbours, the

regions remain compact. Points are tagged so that they may only be allocated to the same region

as their neighbour, which was previously allocated : this ensures the connexity of a region. The

procedure is reiterated with the next first point in the queue until all points have been allocated.

At the end of the allocation process, a partition of all the data points in K regions is obtained. The

next iteration proceeds by replacing the previous seeds by the best proxy for each region, i.e. the

data point associated with the axis most closely parallel to the average direction of the region. A

new partition is built from these new seeds, leading to a further iteration. The number of

iterations is set as “LoopNumber” (100-200 have proven sufficient). In order to escape local

minima, the basic algorithm is run many times (“IterNumber”), starting with different seeds, and

improved by inserting and deleting regions at regular intervals (“Divisor”) during iterations.

MATLAB code:

% clustering algorithm

% input data is a Nx6 array where N is the number of axes,

% and the 6 columns are: X,Y,Z (coord of axis location),Vx,Vy,Vz (coord of

axis vector)

% input Table is a Nx2 array giving the 5% significance threshold of any

region as a function of the number of axes in the region

N=250; % number of axes

RegionNumber=3; %number of regions

NeighborNumber=7; % number of neighbors to be fed into the queue

ThresholdRatio=1.0; % if 1 means that the 5% threshold will be used

SizeLimit=35; % only regions including more than SizeLimit axes will be

included in the SignifRegionsLeagueTable array

IterNumber=100; % number of trials with different initial seeds

LoopNumber=100; % number of iterations starting from a set of initial seeds

Divisor=51; % every Divisor loops, 2 regions are fused, and a new one is added

MaxDim=1000; % maximum dimension of the grid

% computing neighbor list of each axis, fed into AllNeighborList array

AllNeighborList=zeros(NeighborNumber,N);

NeighborSource=ones(N,N);

for i=1:N

 NeighborSource(i,i)=0;

end;

k=ones(N,1); % will count the number of neighbors fed into each column of

AllNeighborList, stopping at NeighborNumber

for distance=1:1:MaxDim

 for i=1:N

 for j=1:N

 if k(j,1)~=(NeighborNumber+1) && (NeighborSource(i,j)~=0)...

 && sqrt((data(j,1)-data(i,1))^2+(data(j,2)-

data(i,2))^2+(data(j,3)-data(i,3))^2)<distance;

 AllNeighborList(k(j,1),j)=i;

 NeighborSource(i,j)=0;

 k(j,1)=k(j,1)+1;

 end;

 end;

 end;

 if sum(k)==((NeighborNumber+1)*N)

 break;

 end;

end;

% trials starting each time with new seeds

iter=0;

 SignifRegionsRank=1;

 SignifRegions=zeros(N,2*IterNumber); % array listing the member-axes of

the significant regions at the end of each trial

 SignifV3=zeros(3,2*IterNumber); % array giving the 3rd eigenvector of each

region

 SignifThreshold=zeros(3,2*IterNumber); % array giving the threshold and

count (how many times it appeared at the end of a loop) of each region

 % initialization of the best regions as defined by the criterium chosen

 % (see line 357)

 BestProd = 0;

 BestSum=0;

 BestRegions=zeros(1,RegionNumber);

 BestList=zeros(N,N);

 BestThreshold=zeros(RegionNumber,1);

 BestNbSignifPoints=0;

 BestRegionsMembers=zeros(N,RegionNumber);

 maximum=-1;

while iter<IterNumber

Regions=zeros(1,RegionNumber); % array where the seeds of regions are listed

RegionsList=zeros(N,N); % array where all members of the region are listed

% random choice of seeds

RegionIndex=randperm(N);

for i=1:RegionNumber

 RegionsList(RegionIndex(i),RegionIndex(i))=1; % The RegionsList array has

ones in the diagonal when it intersects the ranks of the seeds in the data

array

 Regions(1,i)=RegionIndex(i);

end;

% Optimization loop proceeding from the same initial seeds

threshold=zeros(RegionNumber,1);

loops=1;

while loops<LoopNumber

 % module of regions deletion/addition

 if mod(loops,Divisor) == 0

 [MinThreshold,Index]=min(threshold); % Index is the index of the

region with the worst score

 WorstRegionProxy=LastRegions(1,Index); % WorstRegionProxy is the proxy

of the worst region

 worstrating=1;

 for i=1:N % looking for the worst axis in the worst region (which axis

will later be introduced as the added seed of the additional region)

 if LastRegionsList(i,WorstRegionProxy)~=0 % computes the

distorsion between this axis and its proxy

 rating=abs(dot(data(i,4:6),data(WorstRegionProxy,4:6)));

 if rating < worstrating

 worstrating=rating;

 worstpoint=i; % this is the axis that will be used as a new

seed for the next loop (to be done by changing RegionsList)

 end;

 end;

 end;

 % searching the two regions to be fused = neighboring regions,

 % which when fused will give the lowest distortion

 BestDistortion=0;

 % this will create a table, called LastRegionsMembers, with

 % a list of member-points in each region of LastRegions

 LastRegionsMembers=zeros(N,RegionNumber);

 for m=1:1:RegionNumber

 n=1;

 for i=1:1:N

 if LastRegionsList(i,LastRegions(1,m))~=0

 LastRegionsMembers(n,m)=i;

 n=n+1;

 end;

 end;

 end;

 tf=0; % truth function = 0 if regions j and k are not contiguous, and

1 if they are

 for j=1:RegionNumber % first region

 for k=j+1:RegionNumber % second region

 for n=1:N % search over all member axes of the first

region

 if LastRegionsMembers(n,j)~=0 % axis n of the first

region

 tf=ismember(LastRegionsMembers(n,j),

AllNeighborList(:,k)); % checks whether regions j and k are contiguous : is

axis n of the first region a neighbor of any of the axes of the second region

 if tf==1 % these 2 regions are contiguous

 % computes the distortion of these two regions

when fused together

 FusedRegions=zeros(N,6);

 rank=1;

 for i=1:N % builds the data array for all the

axes in the fused region

 if LastRegionsMembers(i,j)~=0

FusedRegions(rank,4:6)=data(LastRegionsMembers(i,j),4:6);

 rank=rank+1;

 end;

 end;

 for i=1:N

 if LastRegionsMembers(i,k)~=0

FusedRegions(rank,4:6)=data(LastRegionsMembers(i,k),4:6);

 rank=rank+1;

 end;

 end;

 % computes the average axis-vector in the

region

 dircos=zeros(3,3);

 dircos(1,1)=sum(FusedRegions(:,4).^2);

dircos(1,2)=sum(FusedRegions(:,4).*FusedRegions(:,5));

dircos(1,3)=sum(FusedRegions(:,4).*FusedRegions(:,6));

 dircos(2,1)=dircos(1,2);

 dircos(2,2)=sum(FusedRegions(:,5).^2);

dircos(2,3)=sum(FusedRegions(:,5).*FusedRegions(:,6));

 dircos(3,1)=dircos(1,3);

 dircos(3,2)=dircos(2,3);

 dircos(3,3)=sum(FusedRegions(:,6).^2);

 % comparing the third eigenvalue to the 5%

significance Table

 [V,D]=eig(dircos);

 distortion=D(3,3)/Table(rank,2);

 transpV = V';

 if distortion>BestDistortion

 BestDistortion=distortion;

 Fused1=LastRegions(1,j); % the two regions

to be fused

 Fused2=LastRegions(1,k);

 end;

 break; % since the two regions are contiguous,

there is no need to further explore the n axes of the first region

 end;% end of computation of fused regions

distortion

 else % the end of the list of axes in the first region

has been reached

 break;

 end;

 end;

 end;

 end;

 % computation of the proxy of the new fused region

 bestdotproduct=0;

 for i=1:N

 if LastRegionsList(i,Fused1)~=0

 dotproduct=abs(dot(transpV(3,:),data(i,4:6)));

 if dotproduct > bestdotproduct

 bestdotproduct=dotproduct;

 bestproxy=i;

 end;

 end;

 end;

 for i=1:N

 if LastRegionsList(i,Fused2)~=0

 dotproduct=abs(dot(transpV(3,:),data(i,4:6)));

 if dotproduct > bestdotproduct

 bestdotproduct=dotproduct;

 bestproxy=i;

 end;

 end;

 end;

 % if the added distortion is less than half the distortion of the worst

region

 if (BestDistortion -0.5*(threshold(j,1)+threshold(k,1)))< 0.5*MinThreshold

 % creates the new list of seeds: deleting Fused1 and Fused2 (replaced

 % by bestproxy), and adding worstpoint

 Regions=LastRegions;

 Regions(1,Fused1)=bestproxy;

 Regions(1,Fused2)=worstpoint;

 RegionsList=zeros(N,N);

 for i=1:RegionNumber

 RegionsList(Regions(i),Regions(i))=1; % The RegionsList array has ones in

the diagonal when it intersects the ranks of the seeds in the data array

 end;

 end;

 end;

 % end of module of regions deletion/addition

% creating a queue of seeds-neighbors sorted in ascending order of

% "distortion" (angle between the axis-vectors of the neighbor and its

% seed)

% queue size is RN*NN,3: 1rst row=axes identity, 2nd row=seed identity, 3rd

row=distortion

queue=zeros(3,RegionNumber*NeighborNumber);

for i=1:1:RegionNumber

 queue(1,NeighborNumber*(i-1)+1:1:NeighborNumber*i)=

AllNeighborList(:,Regions(1,i));

 queue(2,NeighborNumber*(i-1)+1:1:NeighborNumber*i)=Regions(1,i);

end;

for i=1:1:RegionNumber*NeighborNumber

 queue(3,i)=abs(dot(data(queue(2,i),4:6),data(queue(1,i),4:6)));

end;

transpqueue=queue';

transpqueue=sortrows(transpqueue,3);

queue=transpqueue';

% allocating axes to the various regions, following the order of the queue

Allocated=zeros(N,1); % keeps track of axes already allocated

for i=1:1:RegionNumber

 Allocated(Regions(1,i),1)=1;

end;

while size(queue,2)~=0

 if queue(1,size(queue,2))~=0 && Allocated(queue(1,size(queue,2)))~=1%

checks that the 1rst axis in the queue is not already allocated to a region

 RegionsList(queue(1,size(queue,2)),queue(2,size(queue,2)))=1;%

registers the 1rst axis in RegionsList: a 1 in line=axis,column=seed

 Allocated(queue(1,size(queue,2)))=1;

 neighbors3=AllNeighborList(:,queue(1,size(queue,2)));% find the

neighbors of this newly allocated axis

 Added=zeros(3,NeighborNumber-1);

 rank=1;

 for i=1:NeighborNumber

 if neighbors3(i)~=queue(2,size(queue,2)) &&

Allocated(neighbors3(i))~=1 % excl the seed and already allocated points from

neighbors to be added to the queue

 Added(1,rank)=neighbors3(i);

 Added(2,rank)=queue(2,size(queue,2)); % this neighbor is given

the same seed as its precursor

Added(3,rank)=abs(dot(data(Added(1,rank),4:6),data(Added(2,rank),4:6)));

 rank=rank+1;

 end;

 end;

 queue(:,size(queue,2))=[]; % deletes the last row (first in the queue)

 queue=[Added queue];

 else

 queue(:,size(queue,2))=[]; % deletes the last row (first in the queue)

 end;

end;

% finding the best center for each region

S=sum(RegionsList);

bestscore=zeros(RegionNumber,1); % list of scores of each region

bestpoint=zeros(RegionNumber,1); % list of best centers

k=1; % index of the region

V3Table=zeros(3,RegionNumber); % table of third eigenvectors

for region=1:RegionNumber % iterates over all regions

 rank=1;

 neighbormatrix=zeros(S(Regions(region)),3);

 for i=1:N % builds the data array for all the points in the region

 if RegionsList(i,Regions(region))~=0

 neighbormatrix(rank,:)=data(i,4:6);

 rank=rank+1;

 end;

 end;

 % computes the average axis-vector in the region

 dircos=zeros(3,3);

 dircos(1,1)=sum(neighbormatrix(:,1).^2);

 dircos(1,2)=sum(neighbormatrix(:,1).*neighbormatrix(:,2));

 dircos(1,3)=sum(neighbormatrix(:,1).*neighbormatrix(:,3));

 dircos(2,1)=dircos(1,2);

 dircos(2,2)=sum(neighbormatrix(:,2).^2);

 dircos(2,3)=sum(neighbormatrix(:,2).*neighbormatrix(:,3));

 dircos(3,1)=dircos(1,3);

 dircos(3,2)=dircos(2,3);

 dircos(3,3)=sum(neighbormatrix(:,3).^2);

 % comparing the third eigenvalue to the 5% significance Table

 [V,D]=eig(dircos);

 threshold(k)=D(3,3)/Table(S(Regions(region)),2);

 transpV = V';

 V3Table(:,k)=V(:,3);

 % identifying the axis with axis-vector closest to average vector

 for i=1:N

 if RegionsList(i,Regions(region))~=0

 score=abs(dot(transpV(3,:),data(i,4:6)));

 if score > bestscore(k)

 bestscore(k)=score;

 bestpoint(k)=i;

 end;

 end;

 end;

 k=k+1;

end;

LastRegions=Regions;

Regions=(bestpoint)';

LastRegionsList=RegionsList;

RegionsList=zeros(N,N);

% defines the new seeds as all the bestpoints

for i=1:RegionNumber

 RegionsList(Regions(i),Regions(i))=1; % The RegionsList array has ones in

the diagonal when it intersects the ranks of the seeds in the data array

end;

loops=loops+1;

end;

% Recording (and counting) all significant regions including more than

SizeLimit axes

for i=1:RegionNumber % filling the SignifRegions array

 if (threshold(i,1)>=ThresholdRatio)&&

(sum(LastRegionsList(:,LastRegions(1,i)))>=SizeLimit)

 k=1;

 for m=1:1:N

 if LastRegionsList(m,LastRegions(1,i))~=0

 SignifRegions(k,SignifRegionsRank)=m;

 k=k+1;

 end;

 end;

 SignifV3(:,SignifRegionsRank)=V3Table(:,i);

 SignifThreshold(1,SignifRegionsRank)=threshold(i);

 SignifThreshold(3,SignifRegionsRank)=k-1;

 SignifRegionsRank=SignifRegionsRank+1;

 end;

end;

% Optimisation module

SumThreshold = sum(threshold);

ProdThreshold = cumprod(threshold);

% computes the number of axes belonging to regions with threshold > 1

% (i.e. 5% significant regions)

NbSignifPoints=0;

for r=1:1:RegionNumber

 if threshold(r,1)>=ThresholdRatio

 NbSignifPoints=NbSignifPoints +

sum(LastRegionsList(:,LastRegions(1,r)));

 end;

end;

% here the criterium is NbSignifPoints (could be SumThreshold or

% ProdThreshold or any other criterium)

if NbSignifPoints>maximum % alternatively :

ProdThreshold(RegionNumber,1)>maximum etc...

 BestRegionsMembers(:,:)=0;

 maximum=NbSignifPoints; %ProdThreshold(RegionNumber,1);

 BestProd = ProdThreshold(RegionNumber,1);

 BestSum = SumThreshold;

 BestRegions=LastRegions;

 BestList=LastRegionsList;

 for j=1:1:RegionNumber

 k=1;

 for i=1:1:N

 if BestList(i,BestRegions(1,j))~=0

 BestRegionsMembers(k,j)=i;

 k=k+1;

 end;

 end;

 end;

 for j=1:1:RegionNumber

 for i=2:1:N

 if BestRegionsMembers(i,j)<BestRegionsMembers(i-1,j)

 for k=i:1:N

 BestRegionsMembers(k,j)=0;

 end;

 end;

 end;

 end;

 BestThreshold=threshold;

 BestV3Table=V3Table;

 BestNbSignifPoints=NbSignifPoints;

 BestIteration=iter;

end;

iter=iter+1;

end;

% counts the number of appearances of the various regions along successive

% iterations

for t=1:size(SignifThreshold,2)

 value=SignifThreshold(1,t);

 for u=1:size(SignifThreshold,2)

 if SignifThreshold(1,u)==value

 SignifThreshold(2,t)= SignifThreshold(2,t)+1;

 end;

 end;

end;

SignifThreshold=cat(1,SignifThreshold,SignifV3,SignifRegions);

A=SignifThreshold';

SignifRegionsLeagueTable=sortrows(A,-1);% sorts SRLT according to descending

order of the threshold value

line=2;

while ((SignifRegionsLeagueTable(line,1)~=0) ||

(line~=size(SignifRegionsLeagueTable,1)))

 if SignifRegionsLeagueTable(line,1)==SignifRegionsLeagueTable(line-1,1)

 SignifRegionsLeagueTable(line,:)=[]; % make sure that each region

appears only once

 line=line-1;

 end;

 line=line+1;

 if line==size(SignifRegionsLeagueTable,1)

 break;

 end;

end;

SignifRegionsLeagueTable=sortrows(SignifRegionsLeagueTable,-3);% sorts SRLT

according to descending order of nb of points

% processing the best solution (from all the iterations)

% computes E3 of each region

BestRegionsE3=zeros(3,RegionNumber);

BestRegionsD3=zeros(3,RegionNumber);

colordata=zeros(1,6);

for r=1:1:RegionNumber

 sizeregion=sum(BestList(:,BestRegions(1,r)));% computes nb of points in

each region

 regiondata=zeros(sizeregion,6);

 t=1;

 for s=1:1:N % fills a new dataset, called regiondata with position and

axis-vector of all members of the region

 if BestList(s,BestRegions(1,r))~=0

 regiondata(t,:)=data(s,:);

 t=t+1;

 end;

 end;

 % computes the eigenvectors of the regiondata dataset

 dircos=zeros(3,3);

 dircos(1,1)=sum(regiondata(:,4).^2);

 dircos(1,2)=sum(regiondata(:,4).*regiondata(:,5));

 dircos(1,3)=sum(regiondata(:,4).*regiondata(:,6));

 dircos(2,1)=dircos(1,2);

 dircos(2,2)=sum(regiondata(:,5).^2);

 dircos(2,3)=sum(regiondata(:,5).*regiondata(:,6));

 dircos(3,1)=dircos(1,3);

 dircos(3,2)=dircos(2,3);

 dircos(3,3)=sum(regiondata(:,6).^2);

 [V,D]=eig(dircos);

 BestRegionsE3(:,r)= V(:,3);

 BestRegionsD3(:,r)= [D(1,1);D(2,2);D(3,3)];

 % creates colordata, an Nx6 array assigning different colors to

 % axis-points according to their region

 regioncolordata=regiondata;

 colorcode=rand(1,3);

 if BestThreshold(r,1)<ThresholdRatio

 regioncolordata(:,4:6) = ones(sizeregion,3);

 else

 for i=1:1:sizeregion

 regioncolordata(i,4:6) = colorcode;

 % axes belonging to non-significant regions are coloured in black

% if BestThreshold(r,1)<0.99

% regioncolordata(i,4:6) = [0,0,0];

% end;

 end;

 end;

 colordata=cat(1,colordata,regioncolordata);

end;

save sauvegarde;

colordata(1,:)=[];

scatter3(colordata(:,1),colordata(:,2),colordata(:,3),50,colordata(:,4:6),'fil

led');

hold on;

quiver3(data(:,1),data(:,2),data(:,3),data(:,4),data(:,5),data(:,6), 0.25);

hold off;

return;

