

Fig. S1. Quantification of the number of $\mathrm{Lh} \times 2 / 9^{+}$cells in control and caBmprIb electroporated spinal cords. Electroporation of fGFP ( $n=69$ sections from three embryos) or caBmprIb-IRES-fGFP+ ( $n=68$ sections from four embryos) does not affect the number of Lhx $2 / 9^{+}$neurons generated. Equivalent numbers of Lhx $2 / 9^{+}$neurons are present on the electroporated and non-electroporated sides of HH stage 18 spinal cords (fGFP: probability of similarity, $P>0.29$; caBmprIb: probability of similarity, $P>0.16$ ). Error bars represent s.e.m.


Fig. S2. The Math1 enhancer drives YFP expression in commissural neurons. (A-H) The Math 1::Cre line can drive the expression of YFP in Tag1 ${ }^{+}$commissural axons (arrowheads, C,G) when crossed to the Cre reporter strain, Rosa26R(lox-stoplox)::Yfp. Transverse spinal sections, taken from E10.5 (A-D) and E11.5 (E-H) Math $1::$ Cre; Rosa26R::Yfp embryos, were labeled with antibodies against Cre (red, A,B,E,F), GFP (green, A,E,C,G) and Tag1 (blue, A,E,D,H). Scale bars: $45 \mu \mathrm{~m}$ in A-D; $55 \mu \mathrm{~m}$ in E-H.


Fig. S3. The loss of BmprIa or BmprIb has no effect on the fate of commissural neurons. (A-D) There was no observable difference in the number of Lhx $2 / 9^{+}$cells in the presence or absence of either BmprIa or BmprIb. Transverse sections were taken from brachial or thoracic levels of the spinal cord from E10.5 Math1::Cre; BmprIa ${ }^{++}$(control, A), Math1::Cre; BmprIa ${ }^{\text {foxffox }}$ (B), $\mathrm{BmprIb}^{+++}$(control, C) and $\mathrm{BmprIb}^{--}$(D) embryos and labeled with antibodies against Cre (red, A,B), Lhx2/9 (red, C,D) and Olig2 (green). (E,F) The numbers of Cre ${ }^{+}$(E) or Lhx2/9 ${ }^{+}$(F) cells were plotted as a function of Olig2 ${ }^{+}$cell number to normalize the extent of development between embryos. A logarithmic regression analysis reveals no difference between the distribution of $\mathrm{Cre}^{+} / \mathrm{Olig} 2^{+}$cells in sections from Math $1:$ Cre; BmprIaflox/flox ( $n=59$ sections from three embryos) and control ( $n=29$ sections from two embryos) littermates or Lhx $2 / 9^{+} /$Olig2 $2^{+}$cells in sections from $\mathrm{Bmprlb}^{--}$( $n=59$ sections from four embryos) and $\mathrm{Bmprlb}^{+/} / \mathrm{BmprIb}^{+/}$( $n=40$ sections from four embryos) littermates. Scale bar: $25 \mu \mathrm{~m}$.

