

NonTF TF Not extracted 31155 2049 Extracted 35 genes 23 12$p=6.83 \times 10^{-7}$ (Fisher's exact test)

$\underset{\text { rate }}{\text { Enrichment }}=\frac{\text { Ratio of TFs in extracted genes }}{\text { Ratio of TFs in TAIR9 }}=\frac{(12 / 35)}{(2,061 / 33,239)}=5.53$

Fig. S1. Clustering analysis of expression array and ChIP-PCR assay in the ARF3 locus. (A) Typical examples of the transgenic plants used for ChIP-chip and ChIP-PCR assays. The presence of pAS1:T7:AS1 complemented the as $1-1$ mutant phenotype, and the presence of pAS2:AS2:FLAG complemented the as2-1 mutant phenotype. Schematics of the construction of pAS1:T7:AS1 and pAS2:AS2:FLAG are shown. The green and blue boxes indicate T7-tag and FLAG-tag, respectively. Black and white boxes indicate coding and non-coding exons, respectively. G.(B) Clustering analysis by KB-FuzzyART. Levels of gene expression in comparison with those of Col-0 (WT) are shown. Clusters 3 and 6 contained genes having elevated transcription levels in as 1-1 and as2-1. (C) Enrichment of genes for transcription factors among 35 selected genes, and heatmap and hierarchical clustering. The ratio of genes for transcription factors to all genes in Arabidopsis is $6.20 \%(2061 / 33,239)$ in the TAIR9 database (http://www.arabidopsis.org/). The ratio was $34.3 \%(12 / 35)$ in the case of the 35 selected genes. Therefore, the enrichment rate was estimated as $5.53\left(P=6.83 \times 10^{-7}\right.$, as calculated by Fisher's exact test). For the signal $\log 2$ ratio of 12 transcription factors, hierarchical clustering was performed by using Euclidean distance and average linkage. In the present study, we merged three databases for transcription factors: namely, the Arabidopsis transcription factor database (AtTFDB; http://arabidopsis.med.ohio-state.edu/AtTFDB/), the Arabidopsis thaliana Regulatory Network (AtRegNet; http://arabidopsis.med.ohio-state.edu/REIN/), and the transcription factors portion of the Gene Ontology database (http://www.geneontology.org/). In all, 2374 transcription factors were identified as the products of independent genes. (D) Schematic of the ARF3 genomic region. Boxes indicate exons. Relative positions of primer pairs used in ChIP-PCR assays are shown. (E) Results of ChIP-PCR assays of plants harboring p35S:AS1:GFP with GFP- and AS1- specific antibodies, as indicated. (F) Expression analysis of $B P, K A N 2$ and $Y A B 5$ genes in 35 S :AS2:GR plants. Relative expression levels of the $B P, K A N 2$ and YAB5 genes in 7-day-old 35S:AS2:GR plants after treatment with DEX (gray bars) or DEX and CHX (white bars) for the times indicated.

Fig. S2. Mutations in ARF3 and ARF4 suppressed major phenotypes of as1 and as2. Representative gross morphology of 40-dayold plants and their leaves are shown. The genotype of each plant is indicated. Scale bars: 5 mm .

Fig. S3. Effect of 5-aza-2'-deoxycytidine on leaf polarity and levels of cytosine methylation of the ARF3 and ARF4 loci in Col0, as2-1, AS2-eoe/as2-1 and as1-1 plants. (A) Schematic of the ARF3 locus. Gray boxes indicate exons. The region delineated by a dashed line (exon 10) was examined for cytosine methylation. Vertical bars indicate percentages of methylated cytosines in CG pairs. Red and blue bars indicate cytosines with decreased and increased levels of methylation, respectively, in the as 1 and as 2 mutants. Green bars indicate a decreased level in the as 1 mutant and an increased level of methylation in the as 2 mutant. (B) Schematic of the ARF4 gene. Gray boxes indicate exons. Exon 10 was examined for cytosine methylation. Vertical bars indicate percentages of methylated cytosines in CG pairs. The tasiR-ARF recognition sites are indicated as purple lines.

Table S1. Sequences of primers used for real-time RT-PCR, ChIP-PCR, Northern blotting of small RNA and bisulfite sequencing

Experiment	Primer	Sequence ($5^{\prime}-3{ }^{\prime}$)
Real-time RT-PCR	ETTIN-F ETTIN-R BP-F BP-R KAN2-F KAN2-R YAB5-F1 YAB5-R1 ARF4-F ARF4-R ACT2-F ACT2-R	CGCCTACTCAATAACCGATCATC ACGGCCCACACCAAATGTT TGTTGTTTCCACATATGAGCTCTCT TCATGATCAGATCGGAAGCAAT AAGGAACTAGATGGAAAGTGCTCAA GCTTGTTCCCGAGATGCTTG ACGCCCTAATTTCCAGGCAAC GTTGCTCAGTTATGGTACGAG CGCTTAAATCATTCCCGCAAT ACTTGTTGGCTTGGTAAGCAAAG TCGGTGGTTCCATTCTTGCT GCTTTTTAAGCCTTTGATCTTGAGAG
ChIP-PCR assays	pETT-1F pETT-1R pETT-2F pETT-2R pETT-3F pETT-3R pETT-4F pETT-4R pETT-5F2 PETT-5R2 pETT-6F PETT-6R pETT-7F pETT-7R pETT-8F2 pETT-8R2 pETT-9F pETT-9R pETT-10F pETT-10R pETT-11F pETT-11R pETT-12F pETT-12R pETT-13F	```CAAACTAAACTAAACAATG GTTTGAAACGAATAACAC ATTCGTTTCAAACTTGTC CGAGGGTTCAACACAATT TGTTGAACCCTCGAATGA AAGTCTCTCGAGCCTCAC GCTCGAGAGACTTTCCAA AAATTTTGATGAACACGC ACTGTCTCGCGTGTTCATCA CAAGAAACATGCAAGGGTAGAA GCATGTTTCTTGTATTTAC CTATCAAACCACAATTTG TGTGGTTTGATAGTAAGT TTGAATTTAAGTGCAGTG ATGCCGTTGGAAAAATCAAC ACACTTGAACTAGTGATGATGCT ATAGCATCATCACTAGTT TTTGGTAAGATGAGGTTTT CCAAAAACATATATAATCTCTACC AGAAATTTGTGCATGAAC AAGATTGTTTCTTCTTGC TTGTTGCCAATGTGTCCA ACATTGGCAACAAAATGT TAATACGACCTATTCATC ATAGGTCGTATTAAATCG```

pETT-13R	TAGTATATGGTGAAAAGG
pETT-14F	CCATATACTAAACTACTG
pETT-14R	TTGTGGGAGAAATAAAAG
pETT-15F2	TGCAATTCGTTTTGATAGAACA
pETT-15R2	CATGCGCGACACATAGTTTT
pETT-16F2	TCTCTCCACGCACAAAAGGTC
pETT-16R2	TGACTTTTACCCTCTCAGCCAAA
pETT-17F2	TTTTCTCCACGGCTTAAAGACTC
pETT-17R2	CCTCCGTCTCCATCACGTT
pETT-18F	CTCTCTCTTTAATGGGTG
pETT-18R	TTGGTAGAGAGATAAGGG
pETT-19F	ATCTCTCTACCAAAAAGA
pETT-19R	GAGAGCAGAGGAGAAAAC
pETT-20F2	TGTTTTCTCCTCTGCTCTCAAA
pETT-20R2	AATGCCACGAGAAGAAATGC
pETT-21F2	TCCTCTTTTGCTCCATTTGC
pETT-21R2	CAAAATCCCCCACATTTTGT
pETT-22F	TTTGATTTCGTAGGCAGAGA
pETT-22R	ACCTCTTAAGCACTTCATAA
pETT-23F	TGGAGAGGAAGATTATGAAG
pETT-23R	ATGAGCTAATAAGAGAACTC
pETT-24F	CTCTTATTAGCTCATATTGAG
pETT-24R	AGGTTGCCCTAAAAGTCACT
pETT-25F	TTGAATGGTTTGAGTGACTT
pETT-25R	CCAGTCGCAGTTTGCCATCA
pETT-26F	TACAGAGGAGATGATGGCAA
pETT-26R	GAAATTTTAAATGCTGAAAACG
pETT-27F	CAGCATTTAAAATTTCATTTCAG
pETT-27R	TCCCAATGCAAAAGGGATAG
pETT-28F	GAAGGTTGTTGACTATCCCT
pETT-28R	TTGAACCAGGCCACCTGATT
pETT-29F	TGGATCCAATCAGGTGGCCT
pETT-29R	ATGGCGAGACACGCTGTTGA
pETT-30F	ATCAACAGCGTGTCTCGCCA
pETT-30R	CGCGAATCCCCTCTGCAATA
pETT-31F	TTTCTGCTATTATTGCAGAG
pETT-31R	TGATCGGTTATTGAGTAGGC
pETT-32F	GAAACAGTTCCCGCCTACTC
pETT-32R	CGTCGGTTAATGGGAAACCA
pETT-33F	ATGCAGGCTGTTTGGTTTCC

	pETT-33R pETT-34F pETT-34R	GAACTTTACTTAAGCCACAA TGTTTTATTTGCTTGTGGCT AACGATATCGGACTCCTTCC
Small RNA Northern blotting	miR390 tasiR-ARF miR 165/166 miR 173	GGcGCTaTCCcTCCtGAGcTT TgGGGtCTTaCAAgGTCAaGAA GGgGGAtGAAgCCTgGTCcGA GTgATTtCTCtCTGcAAGcGAA
Bisulfite sequencing	pETT-4_top-F pETT-4_top-R ETT-exon6_top-F ETT-exon6_top-R ETT-exon6_top-F2 ETT-exon6_top-R2 ETT-exon10_top-F ETT-exon10_top-R ARF4-exon10_top-F ARF4-exon10_top-R2	AAGTAGAAGAAGAAGAAGTAAGTGAA ARAATRAATCTCATCTCAACAACAA AGAGGTTTTGTGATATATGGGT CAATCAACTARAACAATACACAACTTA TGTGTTTTTTTTTTAGGTAGTTAAAAATG TTCCTAATATTTATTAAAATTAACAAACTTCT TTTYTGYTATTATTGYAGAGGGGATT AAACCAAACARCCTRCATCT GGTTTTTTGGAYTTTGAGGA ACCTTCATTTTRTRCATCAAACT

Table S2 Summary of ChIP-chip and expression array analysis Download Table S2

