Supporting Information Figure Legends

Fig. S1.

The identification of genes isolated from Prionocidaris baculosa. Alignments of deduced amino acid sequences and construction of phylogenetic trees were performed using MacClade 4.08 (http://macclade.org/macclade.html) and Clustal X (http://www.clustal.org/clustal2/) on the sequences listed below: the sequence of bHLH for hesC, full-length sequence for alx1, T-box sequence for tbr, C-terminal 74 amino acid sequence of the Ets domain for ets1, C-terminal 108 amino acid sequence of Gcm domain for gcm , and C-terminal 83 amino acid sequence of peptidyl-prolyl cis-trans isomerase domain for cyp1 were used. (A) Identification of PbhesC. The phylogenetic tree suggests the isolated gene belongs to the HES family but not the HERP family. In the echinoderm hesC group (green box) of the HES family, the PbhesC candidate is closely related to the other echinoid hesC genes rather than the asteroid hesC. (B) Identification of Pbalx1. The tree clearly supports that the isolated sequence is included in the Cart1 group. Cart1 genes were divided into 2 groups: genes from vertebrates and alx genes of echinoids. Pbalx1 was in the group of the echinoid alx1 genes (blue box) but not in alx4. (C) Identification of Pbtbr. Analysis using 3 subfamily genes of the T-box family (Tbr, Bra, and $T b x$) supported the theory that the isolated gene belongs to the echinoderm Tbr family (green box). In echinoderm tbr genes, our candidate sequence was separated into echinoid $t b r$ (blue box) and asteroid $t b r$. (D) Identification of Pbgcm. The tree shows that the gcm family genes were classified into genes from echinoderms (green box) and the other animals. Among echinoderm genes, the isolated gene showed a higher homology with the other echinoid gcm genes (blue box) than with the asteroid gcm . (E) Identification of Pbcyp1. The
phylogenetic tree analyzed with 8 cyclophillin genes identified in Strongylocentrotus purpuratus suggests that Spcyclophilin1 shows the highest homology to the isolated gene (bootstrap support 100\%). (F) Identification of Pbets1. The C-terminal 74 amino acid sequence of the isolated gene was compared with those of the other ets family genes. Our sequence is 100% identical to those deduced from echinoid ets1 genes (Smets1, PlETS1, and Spets1) and is identical, except for 1 amino acid, with that of asteroid ets1 ortholog. In contrast, there were a number of differences in the amino acid residues compared with the sequences of other ets family genes identified in S. purpuratus (Sp-Pea, Sperg, and Sp-Gabp). Accession numbers are as follows: Sp-HesC, SPU_021608; HphesC, AU274707; SmhesC, AB569638; PmHesC, GU251976; SpHes, AY445629; Sk-hes1, NM_001164994; Dmh, NM_001014577; Sp-Hairy, SPU_006813; Sp-Hey4, SPU_015712; DmE(spl)-HLH-mdelta, X67048; DmHesr-1, AF151523; Sp-Hey, SPU_009465; HsHEY1, NM_012258; SpAlx1, NM_214644; LvAlx1, AY277400; PlAlx1, DQ536192; Smalx1, AB569635; Sp-Alx4, SPU_22816; MmAlx1, NM_172553; Drcart1, GU056833; MmAlx3, NM_007441; MmAlx4, NM_007442; Dmal, NM_164382; Drarx, NM_131384; MmArx, NM_007492; Sp-Arx, XM_001189711; PlSKE-T, AJ309216; HpTb, EF530737; Pjtbr, FJ715949; Smtbr, FJ714958; Ap-T-brain, AB032259; Sktbr1, NM_001164990; MmEomes, NM_010136; MmTbr1, NM_009322; MmTbx6, AY654733; Sp-Tbx-2-3, SPU_023386; MmTbx2, AF244917; MmTbx1, AF349658; Sp-Bra, SPU_013015; MmT, NM_009309; Pmgcm, HP129833; LvGCM; EU306538; Spgcm; NM_214661; BfGcm; XM_002591735; Dmgcm; U34039; MmGcm2; NM_008104; MmGcm1; NM_008103; Spcyclophilin1, NM_0016033647; Sp-Ppib, SPU_013756; Sp-Pdpi (cyclophilin) L7, SPU_008305; Sp-Pdpi (cyclophilin) L5, SPU_000637; Sp-Pdpi (cyclophilin) L8, SPU_028896; Sp-Ppil4; SPU_004626; Sp-Pdpi (cyclophilin) L6, SPU_015088; Sp-Pdpi (cyclophilin) L9, 022479;

Smets1; AB569636; PlEts1; AY442298; SpEts1; NM_214533; ApEts; AB569245; Sp-Pea; SPU_014576; SpErg; AY508725; and Sp-Gapb; SPU_021557.

Fig. S2.

Spatial gene expression analysis at the mid-blastula, mid-gastrula, and pluteus stages and quantitative expression analysis through early development of the P. baculosa embryo. (A1-G1 and H) Mid-blastulae at 12 h postfertilization (hpf). (A2-G2) Mid-gastrulae at 25 hpf . (A3-G3) Pluteus larvae at 72 hpf. (A1-A3) Embryonic development. (A1 and A3) Living embryos. (A2) Immunohistochemistry was performed on the fixed embryo with a P4 antibody. The expression of P4 is observed in the mesenchyme cells ingressed into the blastocoel. (B1-G1, B2-G2, B3-G3, and H) The embryo analyzed by whole-mount in situ hybridization (WMISH). Scale bar $=50 \mu \mathrm{~m}$. (B4G4) Transcript levels analyzed by quantitative real-time polymerase chain reaction (QPCR) from the unfertilized egg (0 hpf) to the pluteus larva (72 hpf) stages. The X -axis shows the time after fertilization. The Y-axis shows the relative amount of subjected mRNA to PbmitCOI mRNA. The error bars show standard deviations. (I) Table showing the onset of Pbalx1, Pbtbr, Pbets1, and Pbgcm expression during the early embryonic stages. The number of embryos with localized gene expression was counted at 4 stages: 64-cell (6 hpf), 120-cell (8 hpf), 240-cell (10 hpf), and 420-cell (12 hpf) stages. Hpf: hours postfertilization. ND: not determined.

[Transition of mRNA expression level through early development]

For all genes other than Pbalx1, maternal mRNA is detected. (B4) Expression of PbhesC continues from the egg (0 hpf) until the pluteus larva (72 hpf) stage. (C4-F4) The expression levels of Pbalx1, Pbtbr, Pbets1, and Pbgcm increased during the blastula stages and reached a peak at the gastrula
stage (25 hpf or 36 hpf). (G4) The expression level of Pbcyp1 markedly increased at 25 hpf and reached a peak at 36 hpf .

[The onset of region-specific expression]

Strong expression regions of PbhesC can be observed as spots in whole embryos by the 120-cell stage (8 hpf). (I) Localized expression of Pbalx1 and Pbets1 starts at the 120-cell stage (8 hpf), whereas that of Pbtbr and Pbgcm starts at the 240 -cell stage (10 hpf) at 1 pole of the embryo. As mentioned below, region-specific expression of Pbcyp1 starts from the mid-gastrula stage.

[The expression pattern at mid-blastula stage (12 hpf)]

(B1) There are a number of spots expressing PbhesC at this stage. To examine the relationship between the location of patches and the animal-vegetal axis, double-WMISH with the vegetal pole marker Pbwnt8 (Yamazaki et al., 2012) was performed. In the double-stained embryos, 1 of the patches of PbhesC expression (arrowhead) was always observed in the center of the Pbwnt8-expressing area (orange double-headed arrow), suggesting that the vegetal pole cells express PbhesC. (C1-F1) The expression regions of Pbalx1 (C1), Pbtbr (D1), Pbets1 (E1), and Pbgcm (F1) are located at 1 pole of the mid-blastula. The multiplex-WMISH using RNA probes of wnt8, alx1, $t b r$, ets1, and $g c m(\mathrm{H})$. All the embryos analyzed had 1 spot, which included alx1, tbr, ets1, and gcm expression, located in the center of the wnt8-expressing region (orange double-headed arrow in H), suggesting their vegetal expression. (G1) Pbcyp1 does not show obvious expression.

[The expression pattern at the mid-gastrula stage (25 hpf)]

(B2-G2) The expression of all genes is observed in the archenteron (bracket) and/or the ingressed mesenchyme cells. Four genes other than PbhesC and $P b g c m$ are expressed in the ingressed skeletogenic mesenchyme cells. White arrowheads in (B2) and (F2) indicate mesenchyme cells with
no gene expression. In the archenteron, the lower part expresses PbhesC (B2), the middle part expresses Pbgcm (F2), and the upper regions shows expression of Pbtbr, Pbets1, and Pbcyp1 (D2, E2, and G2).

[The expression pattern in the pluteus larva at 72 hpf]

(B3-G3) The obvious expression of all genes other than Pbtbr is detected at this stage. (B3) Expression of PbhesC is observed in the tip of the archenteron (arrow) and the coelomic pouch (arrowhead) as well as the ectodermal region. (C3) The pluteus larva weakly expresses Pbalx1 in the mesenchyme cells positioned along the postoral rods. (E3) Pbets1 is expressed in both the ectoderm and the mesenchyme cells located in the tip of the postoral arms (double-headed arrows). (F3) The Pbgcm-expressing cells are located in the tip of the archenteron, the coelomic pouches (arrowhead), or the ectoderm (arrow). (G3) Expression of Pbcyp1 is detected in the coelomic pouches (arrows) and in mesenchyme cells at the tip of the postoral rods (arrowheads) as well as some other regions.

Fig. S3.

QPCR analysis of hesC mRNA in hesC perturbed embryos of P. baculosa (A), S. mirabilis (B), and H. pulcherrimus (C). Analyses are performed at the blastula stage. The hpf is indicated in the upper left corner of each graph. The Y-axis shows the cycle difference (Ct) in QPCR when compared with the uninjected control. The results from 2 batches are shown. Error bars are standard deviations. In all cases, the amount of hesC mRNA is significantly increased by species-specific hesC-MO, whereas the MO derived from the sequence of another species shows no effect.

Figure S1.

Figure S2.

Figure S3.

Table S1. Transition of total cell numbers during early development

Hpf	5	6	8	10	12	16
Average	\pm	$31.8 \pm$	$61.5 \pm$	$128.9 \pm$	$246.4 \pm$	$449.8 \pm$
SD	1.8	1.5	28	46	49	56
Range	$30-32$	$61-62$	$120-147$	$232-272$	$423-470$	$495-624$

Hpf: hours postfertilization.

Average: the average of total cell numbers from 10 individuals.

SD: standard deviation.

Range: from the minimum number to the maximum number.

Table S2. Primers used in the present study.

Gene	Utilize	Primer name	Sequence 5'-3'
PbhesC	degenerate PCR	F	AARATGGARAARGCTGAYAT
		R	HGCANCGRTCNGCNAGRTG
	RACE	F1	GACAGTGCGTTACTTGAAAGAGCTCCAG
		F2	AGTCGAGTGAGGGCAGCAGACCGTTGT
		R1	TGTCGAGGTCGATACTCTCGCAGGATGA
		R2	GCTGGAGACCTCACTCAAACATTCGGTGAAG
	QPCR	F	CACATGCAGTCCAGGCAGTT
		R	GCCTGGCGAGGAAAGACTAA
Pbalx1	degenerate PCR	F	AAARMGNMGNAAYMGNACNACNTT
		R	ATANCCRTTCATCATNCCNAYNAC
	RACE	F1	CACGAGTTATCAGCTGGAGGAAATGGAGAAG
		F2	TCCAGACGTATATTGCAGAGAACAACTC
		R1	TGGCCTCTGTTAGGTCACATCTGAGAGC
		R2	GAGTTGTTCTCTGCAATATACGTCTGGAT
	QPCR	F	GTGAGCGGTTCCAGCAGTTT
		R	CTGGTGGTTGATGCGTGTCT
Pbtbr	RACE	F1	CGCTCCAGTACAACGTGTTTGTCGATATG
		F2	GGTCCCATGTGGCCAGGCTGAGAAT
		R1	CTGCGTCTCGGGAAAGCTATGGGTCTGAA
		R2	CTAACACATGGATGCGAGGTTGGTACTTG
	QPCR	F	CAATCATCGAGGGAAGGACAA
		R	GGATTCTTCGGTCGCTCAGT
Pbets1	RACE	F1	ACATGTCAGCACATCATCAGCTGGACC
		F2	AGTTCAAGCTCTCCGACCCGGACGAA
	QPCR	F	GGCAAGCGCAAGAACAAAC
		R	CTGGAGATCGCACACGAATC
Pbgcm	degenerate PCR	F	GGGNTGGGCNATGMGNAAYAC
		R	CCARAARTGNGTNACNGGRTA
	RACE	F1	AGGTGTTTTCGTTTGCTCCAACAACTGTCA

		F2	ACATTGTCACCGTTCGACCGGCCACGT
	QPCR	F	ACGCTTCAAGCCAAGACGAT
		R	TGCCGAAGGAAGCATAACTG
Pbcyp1	degenerate PCR	F	CAARTTYCAYMGNGTNAT
		R	CTTNCCRWANACNACRTG
	RACE	F1	GATTCAAGGCGGTGACTTTGTCTCAGTAG
		F2	GAGGATGAGAACTTCAAGCTGGACCACTA
	QPCR	F	CCAACGGTTGCCAGTTCTAC
		F	TTCAATGGCCTTCACCACAT
PbmitCO1	QPCR	F	CGGAATGGTTTATGCGATGA
		R	TCCGGTTGGAACTGCTATGA
SmmitCO1	QPCR	F	TTCCTAGTTTGAGCCCACCAT
		R	AGTGGGAACGGCGATTATCA
SmhesC	QPCR	F	ATGACGGTGCGTTACCTGAA
		R	TTCTCGCACGATGACATGAA
HpmitCO1	QPCR	F	CCGCATTCTTGCTCCTTCTT
		R	TGCTGGGTCGAAGAAAGTTG
HphesC	QPCR	F	TGTGCCATCACCAGTCACAG
		R	GTGTTGGCTGGAAGGAGGAG

