

Figure S1: Directional migration of stratified epithelium is not a result of localized cell death. (A-J) Cell death as detected by Lysotracker assay (green) during the time course of mammary epithelial migration toward beads soaked in BSA (A-D) or FGF10 (E-H). Cell death was quantified in one of the three evenly divided regions of an organoid, the front (f), middle (m), or rear (r) regions, depending on their distances from the bead (asterisk). Scale bars: 100μm. (I, J) Quantification of cell death in different regions of mammary organoids during epithelial migration. Only signals that overlap with cell bodies were counted as dying cells whereas background noise was discounted. Statistical data were analyzed using two-factorial Analysis of Variance (ANOVA), having time and section of organoid as the two factors.

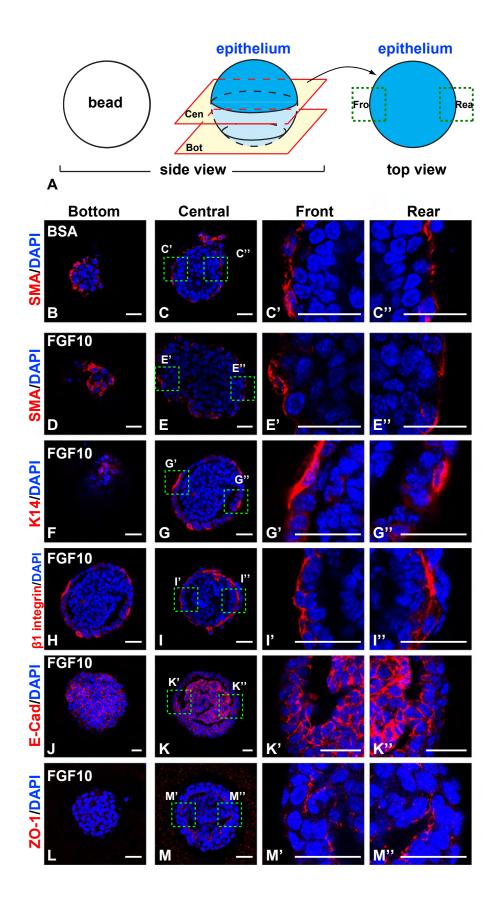
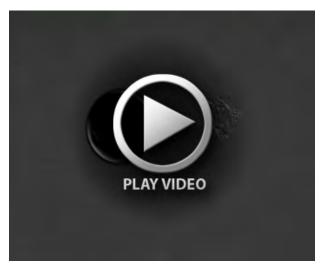


Figure S2: Directional migration of stratified epithelium lacks obvious front-rear polarity. (A) Schematic diagram depicting optical sectioning protocol of the mammary organoid in relation to bead location. Samples were sectioned optically along the Z-axis and images from the bottom (Bot) and central (Cen) are shown in (B-M). The front (Fro) and rear (Rea) areas of the central optical section were further shown in close-up views (C'-M''). (B-M) Immunofluorescence on mammary organoids to detect basal cells using antibodies against SMA (B-C'') and K14 (C-E'') and tissue polarity using antibodies against β 1 integrin (H-I''), E-Cadherin (J-K''), and Zo-1 (L-M''). Scale bars: 25 μ m.


Movie 1: Time-lapse movie of mammary organoids stimulated by FGF2-soaked beads

Movie 2: Time-lapse movie of mammary organoids stimulated by FGF7-soaked beads

Movie 3: Time-lapse movie of mammary organoids stimulated by BSA-soaked beads

Movie 4: Time-lapse movie of mammary organoids stimulated by FGF10-soaked beads

Movie 4': Time-lapse movie of close-up view of mammary collective epithelial migration when stimulated by FGF10-soaked beads

Movie 5: High-resolution time-lapse movie of mammary organoids stimulated by FGF10-soaked beads

SUPPLEMENTARY TABLE S1: Primers used in qPCR.

Gene name	Forward sequence $(5' \rightarrow 3')$	Reverse sequence $(5' \rightarrow 3')$	
Fgfl	ggacaccgaagggcttttat	gcatgcttcttggaggtgtaa	
Fgf2	cggctctactgcaagaacg tgcttggagttgtag		
Fgf3	tgagaacagcgcctatagca	gtaccgcccagaaaagagc	
Fgf4	gcaagetetteggtgtge	cgtaggattcgtaggcgttg	
Fgf5	cgaggagttttcagcaacaaa	tccgtaaatttggcacttgc	
Fgf6	tcagtggaacacacgaggag	cccgttctaccgtggagat	
Fgf7	aagggacccaggagatgaag	actgccacggtcctgattt	
Fgf8	caggtcctggccaacaag	ggtctccacaatgagcttcg	
Fgf9	actgcaggactggatttcatttag	ccaggcccactgctatactg	
Fgf10	cgggaccaagaatgaagact	aacaactccgatttccactga	
Fgf11	ctttgccagaaacagetcet	gcctttgagctgaggctct	
Fgf12	gacgaaaacagcgactacacc	tetecatteatggecacata	
Fgf13	caggcagatggaaccattg	cccacagggatgaggttaaa	
Fgf14	tgctgtacaggcaacaggag	ttctcggtacatggcaacttc	
Fgf15	ggcaagatatacgggctgatt	tccatttcctccctgaaggt	
Fgf16	agtggactctggcctgtaccta	cattcacgtgtgagtttcttcg	
Fgf17	tatgaacaagaggggcaagc	ctcggtgaacacgcagtct	
Fgf18	aggacggggacaagtatgc	ggacttgactcccgaaggtat	
Fgf20	cggcaggatcacagtctctt	aaggtacaggccactgtcca	
Fgf21	agatggagctctctatggatcg	gggcttcagactggtacacatt	
Fgf22	ctatgtggccatgaatcgc	cggaacctacagtccacagag	
Fgf23	atctccacggcaacattttt	gtccactggcggaacttg	
Etv5	aggaccccaggctgtacttt	tggccgattcttctggatac	
K8	ategagateaceacetaceg	tgaagccagggctagtgagt	
K18	agatgacaccaacatcacaagg	tccagaccttggacttcctc	
Notch1	acaacaacgagtgtgagtcc	acacgtggctcctgtatatg	
Hes6	getgeteetegtttgtaacaca	cgatgggatggcaaccaa	
Gata3	agccacatctctcccttcag	agggctctgcctctctaacc	
K14	atcgaggacctgaagagcaa	ggctctcaatctgcatctcc	
p63	ggatgatttggcaagtctga	acttggggtcctcaggagat	
Mmp2	taacctggatgccgtcgt	ttcaggtaataagcacccttgaa	
Mmp3	ttgttctttgatgcagtcagc	gatttgcgccaaaagtgc	
<i>Mmp14</i>	gagaacttcgtgttgcctga	ctttgtgggtgaccctgact	

Actb	ggetgtatteecetecateg	ccagttggtaacaatgccatgt
18S	gtaacccgttgaaccccatt	gtaacccgttgaaccccatt
<i>EEF1g</i>	ggattctgtgtgtttgagagca	cagcaaagctgacccactg
GAPDH	ttcaccaccatggagaaggc	cccttttggctccaccct

SUPPLEMENTARY TABLE S2. Effects of MEK inhibitor (U0126) and PI3K inhibitor (LY294002), alone or in combination, on migration of mammary epithelium when stimulated by beads soaked in FGF10.

U0126 [μM]	LY294002 [μM]	Complete migration	Partial migration	No migration	Numbers tested
2.0	0	0	2	3	5
1.3	0	4	0	0	4
1.0	0	3	0	1	4
0	200.0	0	0	9	9
0	20.0	0	0	6	6
0	13.3	0	0	4	4
0	10.0	1	1	2	4
0	5.0	2	0	2	4
0	3.3	4	0	0	4
2.0	3.0	0	3	0	3
2.0	5.0	0	3	1	4
1.3	13.3	0	0	3	3
1.3	10.0	0	0	7	7
1.3	5.0	0	2	2	4
1.3	3.3	0	3	1	4