Supplementary Material

Supplementary Methods

Table S1. Primers used for cloning and site-directed mutagenesis

Clone	Forward primer (5'-3')	Reverse primer (5'-3')	
Sema6B, full cDNA	ATGTGGCCCCCCCTCGTC	CTATTTGCCCGAGGGAGTC	
Sema6D, full cDNAATGAGGCTTCCTCTGCTGTGCTAG		CTAGTAACTGTATTTGTTCAGTGGTC TGA	
Sema6B AmiR	GGAAGCTCACATGGCGATCCAATCA GCACGACATCAGCATC	CACGTGCTGATTGGATCGCCATGTGA GCTTCCGGTGATAGCG	
PlexinA2 ∆miR	GGAAGCTGTTCATAGGGACCGCTGTG GATGGGAAGC	CCACAGCGGTCCCTATGAACAGCT TCCCATCCTCG	

To clone Sema6B into the pCAGGs vector, we added XbaI and BgIII restriction sites to the forward and reverse primer, respectively. In addition, the forward primer contained the Kozak sequence (5'-GCCACCATGG) and the reverse primer was modified with an in-frame HA-tag sequence. The full-length Sema6B∆miR and truncated Sema6B∆miR v ersion (lacking the intracellular sequence but maintaining the transmembrane domain and the first five intracellular amino acids) were inserted into the pMES-IRES-EGFP vector using XbaI and BgIII restriction sites for the insert, and XbaI and BamHI for the vector. With the same restrictions sites we cloned the myc/his-tagged Sema6B constructs into pcDNA3.1 for *in vitro* assays. Similarly, full-length chicken PlexinA2∆miR and truncated PlexinA2∆CT∆miR (aa 1-1259) were cloned into pMath1-IRES-EGFP for specific expression in dI1 neurons (Wilson and Stoeckli, 2011).

Gene	Target sequence (5'-3')	Comment/Reference	
Sema6B	AAGCTGACTTGGAGGTCGAACC		
PlexinA2	AAGCTCTTCATTGGCACGGCA		
Firefly Luciferase	CGTGGATTACGTCGCCAGTCAA	Wilson and Stoeckli, 2011	

Table S2. Target sequences of artificial miRNAs used in this study

Table S3. ChESTs and cDNAs used to generate *in situ* hybridization probes and/or dsRNA

Gene	ChEST	Comment/Reference	
Semaphorin6B	cDNA fragment	Mauti et al., 2006 and 2007	
Semaphorin6D	225N10 ChEST		
PlexinA1	53D13, 666O16 ChESTs		
PlexinA2	128L21, 297D11 ChESTs 1014M19, 202O14 ChESTs		
PlexinA4			
Sonic hedgehog (Shh)	cDNA fragment Bourikas et al., 20		
Slit2	cDNA fragment Philipp et al., 2012		

Chicken ESTs were purchased from Source BioScience LifeSciences, Nottingham, UK.

Table S4. Antibodies used in this study

Primary antibodies				
Protein detected	Antibody	Company/Source		
myc-tagged Sema6B	mouse anti-Myc (9E10; hybridoma supernatant)	Developmental Studies Hybridoma Bank, Iowa City, IA, USA		
HA-tagged PlexinA2	rabbit anti-HA (1:2,000)	Rockland Immunochemicals #600-401-384 Gilbertsville, PA, USA		
Axonin1/Contactin2	rabbit anti-Axonin1 (1:1000)	Stoeckli and Landmesser, 1995		
PlexinA1	rabbit anti-PlexinA1 (1:200)	Atlas Antibodies, #HPA007499, Stockholm, Sweden		
PlexinA2	goat anti-PlexinA2 (1:200)	R&D Systems, #AF5486 Abingdon, UK		
PlexinA4	rabbit anti-PlexinA4 (1:200)	Abcam, #ab39350 Cambridge, UK		
Sema6B	goat anti-Sema6B (1:20)	R&D Systems, #AF2094		
EBFP2	Fluorescein-conjugated goat anti- GFP (1:500)	Rockland Immunochemicals, #600-102-215		
Hnf3β	mouse anti-Hnf3β (4C7; hybridoma supernatant)	DSHB		
Nkx2.2	mouse anti-Nkx2.2 (74.5A5; conc. supernatant)	DSHB		
Neurofilament	mouse anti-Neurofilament (4H6; supernatant)	DSHB		
Fc-tagged Sema6 (Western blot)	Alexa-488 goat anti-human IgG (1:10,000)	Invitrogen, #A11013 Paisley, UK		
	Secondary antibodies			
Mouse IgG	donkey anti-mouse IgG-Cy3 (1:250)	Jackson ImmunoResearch, #715- 165-150 West Grove, PA, USA		
Mouse IgG	goat anti-mouse IgG-Alexa488 (1:250)	Invitrogen, #A11001		
Rabbit IgG	donkey anti-rabbit IgG-Cy3 (1:250)	Jackson ImmunoResearch, #711- 165-152		
Goat IgG	Goat IgGdonkey anti-goat IgG-Cy3Jackson(1:250)#			

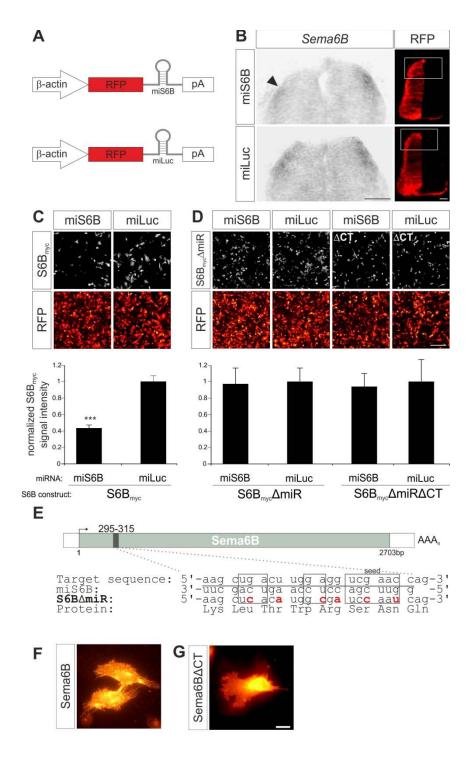

Mouse IgG (Western blot)	sheep anti-mouse peroxidase (1:10,000)	Sigma-Aldrich, #A6782 St.Louis, MO, USA	
Goat IgG	rabbit anti-goat peroxidase	MP Biomedicals, #55358	
(Western blot)	(1:10,000)	Santa Ana, CA, USA	

Table S5. Concentrations and *in vivo* electroporation parameters used in this study

Experiment/Figure	Concentration	Electroporation Parameters	
Fig.1; Fig. 3; Fig. 6 (Long dsRNA)	300 ng/µl dsRNA 20 ng/µl EGFP plasmid	Unilateral, dorsal or ventral targeting (manual positioning) 5 x 50 ms pulses; 25 V	
Fig. 2; Fig. S1 (miS6B, rescue constructs)	300 ng/µl miRNA constructUnilateral or dorsal target500 ng/µl rescue construct(manual positioning)5 x 50 ms pulses; 25 V		
Fig. 4 (miPA2, rescue constructs)	1 μg/μ1 miRNA construct 1 μg/μ1 rescue construct	Floorplate-specific targeting (<i>Hoxa-1</i> enhancer-driven) Bilateral; for each side: 5 x 50 ms pulses; 18V	
Fig. 5, Fig. S2K (miS6B, miLuc)	300 ng/µ1 miRNA construct	Unilateral targeting 5 x 50 ms pulses; 25 V	
Fig. 7, Fig. S2B-E (miPA2, rescue constructs)	600 ng/μ1 miRNA construct 350 ng/μ1 rescue construct	dI1 neuron-specific targeting (<i>Math1</i> enhancer-driven) 5 x 50 ms pulses; 25 V	

In ovo RNAi with long dsRNA was used where possible, as it is the most efficient method for specific gene silencing. Where required, for example for exclusive targeting of dl1 commissural neurons or for rescue experiments, we used miR constructs.

Supplementary Figures

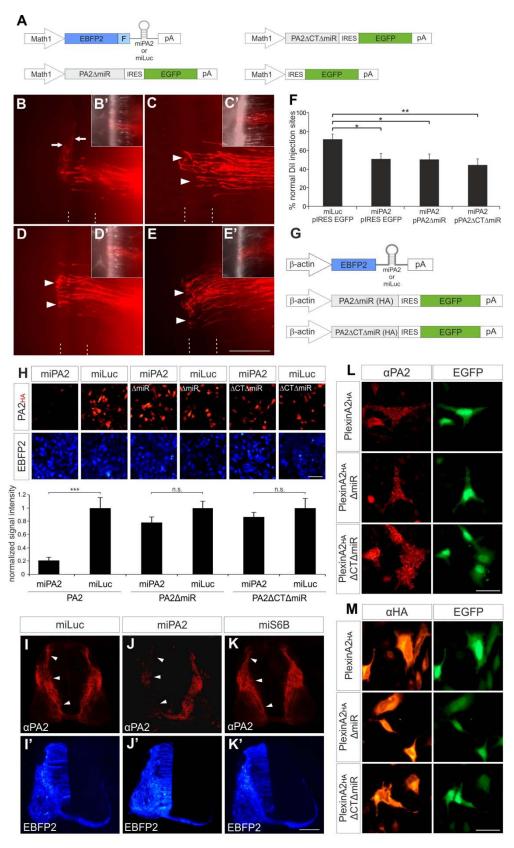
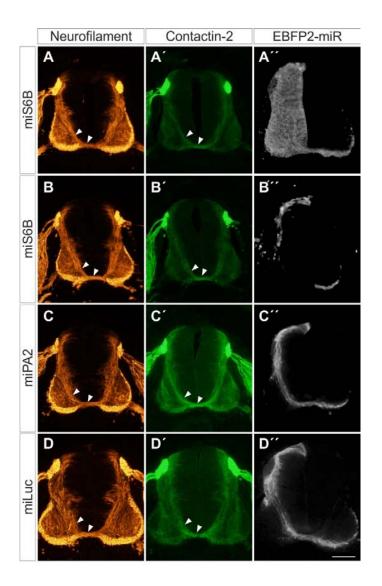


Figure S1

Figure S1. miS6B efficiently downregulates wild-type Sema6B *in vivo* and *in vitro*, but Sema6B containing a mutated miRNA target sequence is resistant to knockdown.

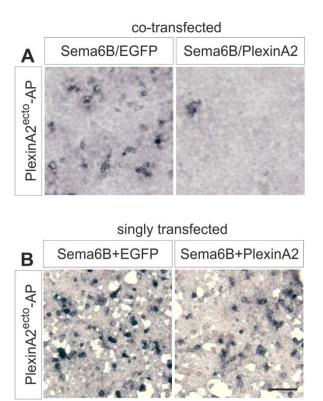
(A) Schematic representations of microRNA constructs against Sema6B (miS6B) and Luciferase (miLuc). (B) Sema6B ISH on transverse spinal cord sections taken from embryos expressing miS6B or miLuc. Electroporation of miS6B reduced expression of Sema6B on the electroporated side (arrowhead) by 80.5±6.1% (s.e.m.) compared to the control side (n=4 sections from two embryos; p<0.0005, t-test). In contrast, electroporation of miLuc did not significantly affect Sema6B expression (staining reduced by 12.4±17.0% (s.e.m.) on the electroporated side compared to the control side; n=5 sections from four embryos; p=0.253, ttest). Transfection was visualized by RFP. Scale bar, 50 µm. (C) miS6B efficiently reduced expression of Sema6B in HeLa cells. Myc-tagged Sema6B (S6B_{myc}) was reduced by almost 60% when co-transfected with miS6B compared to miLuc. n=28 measurements each; ***p < 0.001, t-test. (D) miS6B did not reduce the expression of Sema6B Δ miR or Sema6BACTAmiR, two knockdown-resistant forms of Sema6B. The co-transfection of Sema6BAmiR or Sema6BACTAmiR with either control miLuc or miS6B did not exhibit any significant change in Sema6B/RFP intensity ratios. Ratios were normalized to miLuc control. Scale bars, 100 µm. (E) Design of miRNA-resistant Sema6B for rescue experiments. The region of the Sema6B mRNA that is targeted by miS6B is underlined. Regions important for miRNA target selection and cleavage are indicated by boxes. A miRNA-resistant version of Sema6B (Sema6B Δ miR) was generated by silent mutagenesis of 6 bases in the target region (red). The encoded protein sequence was unaltered. (F) Surface staining of transfected cells revealed that both full-length Sema6B and (G) Sema6BACT constructs were efficiently expressed in HEK293 cells and correctly targeted to the membrane (see also Fig.4M). Scale bar, 5 µm.


8

9

Figure S2. PlexinA2 influences the extension of commissural axons into the ventral spinal cord and their post-crossing turning decision. The PlexinA2 miRNAs and rescue constructs perform as expected.

(A) Schematics of constructs used for dl1 neuron-specific perturbations of PlexinA2. (B) In control embryos co-electroporated with dl1-specific constructs encoding EBFP2-miLuc and the empty pMath1-IRES-EGFP plasmid, commissural axons crossed the floorplate and turned rostrally (arrows). (C) Knocking down PlexinA2 with miPA2 resulted in stalling of post-crossing axons at the contralateral floorplate border (arrowheads). The phenotype caused by miPA2 was not rescued by the co-electroporation of PlexinA2∆miR (D) or by PlexinA2 lacking the cytoplasmic tail (PlexinA2ACTAmiR) (E; arrowheads). The floorplate is indicated by dashed lines. (B'-E') Merge of Dil-labeled axons (red) and farnesylated EBFP2 (white) used to visualize the expression of different miRNA constructs (EGFP not shown). (F) Quantification of Dil sites with normal axonal pathfinding: control (n=8 embryos, N=71 injection sites); knock down (n=16, N=137); full-length rescue (n=25, N=228); ΔCT rescue (n=11, N=108). *p<0.05, **p<0.01. (G) Schematic representations of the constructs used in the verification of miPA2 and PA2ΔmiR constructs. (H) HA-tagged PlexinA2 was reduced by almost 80% when co-transfected with miPA2, compared to miLuc (***p<0.001; n=11 and 13 measurements, respectively). However, miPA2 did not reduce the expression of PlexinA2AmiR and PlexinA2ACTAmiR, since both constructs contained several silent mutations in the miPA2 target sequence (see Methods). Cotransfection of PlexinA2ΔmiR or PlexinA2ΔCTΔmiR with either control miLuc or miPA2 did not exhibit any significant change in PlexinA2/EBFP2 intensity ratios (12-16 measurements in each condition). Ratios were normalized to miLuc control. Scale bars, 100 µm. (I-K) The downregulation of PlexinA2 upon electroporation of miLuc, miPA2 or miS6B was assessed by PlexinA2 immunoreactivity. In control embryos electroporated with miLuc (I), PlexinA2 expression in pre-crossing commissural axons was no different from the control side. In contrast, PlexinA2 was clearly reduced after electroporation of miPA2 (J, arrowheads). Expression of miS6B (K) did not affect surface levels of PlexinA2 in pre-crossing axons. (I'-K') Successful transfection is visualized by EBFP2 expression. (L-M) Surface and total expression of wildtype and knockdown-resistant PlexinA2 in HEK293 cells. (L) Surface expression was demonstrated by staining HEK293 cells with a PlexinA2 antibody before fixation and permeabilization. Successful transfection was demonstrated by EGFP expression from the same plasmid. (M) For staining total levels of the expressed PlexinA2, cells were fixed and stained with an antibody against the C-terminal HA-tag. Scale bars, 20 µm.


Figure S3. Commissural axon outgrowth is not grossly impaired following the loss of PlexinA2 or Sema6B.

To verify that pre-crossing commissural axon projections were grossly normal following the loss of PlexinA2 or Sema6B, transverse sections of the chicken spinal cord were immunolabeled for neurofilament (A-D) and Axonin1/Contactin2 (A'-D'). Neither unilateral (A-A") nor dorsal (B-B") downregulation of Sema6B impaired the ventral growth of commissural axons compared to controls (D-D"). Similarly, no defects in the ventral projection of commissural axons were observed when PlexinA2 was specifically downregulated in dl1 neurons with Math1-miPA2 (C-C"). Scale bar, 100 µm.

	Hnf3β	EGFP	Nkx2.2	EGFP	Shh	Slit2
miPA2	A	A'	B	B'	c	
miLuc	E	E'	F AN	F'	G	
miPA2		r 🥠	J	J'	ĸ	
miLuc	M	M	N	N'	•	P

Figure S4. Downregulation of PlexinA2 in the floorplate does not interfere with floorplate morphology or the expression of other axon guidance cues.

To control for a direct effect on commissural axon guidance of PlexinA2 silencing in the floorplate, we analyzed marker expression in the ventral spinal cord after unilateral (A-H) or bilateral (I-P) electroporation of floorplate-specific constructs encoding miPA2 or miLuc. No differences were seen in any condition when we analyzed Hnf3 β (A,E,I,M) or Nkx2.2 (B,F,J,N). Similarly, no changes in the expression of *Shh* (C,G,K,O) or *Slit2* (D,H,L,P) were observed. Successful electroporation was verified by GFP expression (A'-N', and insets). Scale bar, 50 µm.

Figure S5. Sema6B/PlexinA2 cis-interaction modulates Sema6B/PlexinA2 transinteraction.

We assessed the binding of PlexinA2^{ecto}-AP on HEK293 cells transfected with vectors expressing Sema6B and EGFP, or Sema6B and PlexinA2. In panel (A), the cells were co-transfected with the indicated constructs, promoting the formation of cis-complexes. The binding of PlexinA2^{ecto}-AP to Sema6B/PlexinA2 co-transfected cells was markedly reduced compared to binding on Sema6B/EGFP-expressing cells. In panel (B), the cells were separately transfected with Sema6B, EGFP or PlexinA2 and then mixed and replated in the combinations indicated. After single transfections (minimal cis-interactions), the binding of PlexinA2^{ecto}-AP to Sema6B + EGFP cells was comparable to Sema6B + PlexinA2 cells. Scale bar, 100 µm.