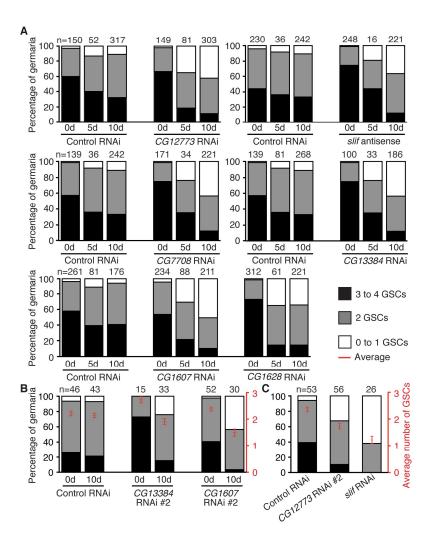


Supplemental Figure 1 Armstrong, Laws and Drummond-Barbosa

Fig. S1. In adult females, *3.1Lsp2-Gal4* is exclusively expressed in adipocytes. Expression of *UAS-GFP* (green) induced by several larval and/or adult fat body Gal4 drivers in adult female tissues shows that only *3.1Lsp2-Gal4* is exclusively expressed in adipocytes. DAPI (blue) labels nuclei in brains, guts and oenocytes; α-spectrin (red) labels cell membranes in

oenocytes (except in *ppl-Gal4*). Arrowheads indicate GFP-positive nuclei in the gut, for *ppl-Gal4*. Scale bars: 50 μ m (brains), 50 μ m (guts, for all except *ppl-Gal4*), 20 μ m (gut, for *ppl-Gal4*), 10 μ m (oenocytes), or 20 μ m (adipocytes).



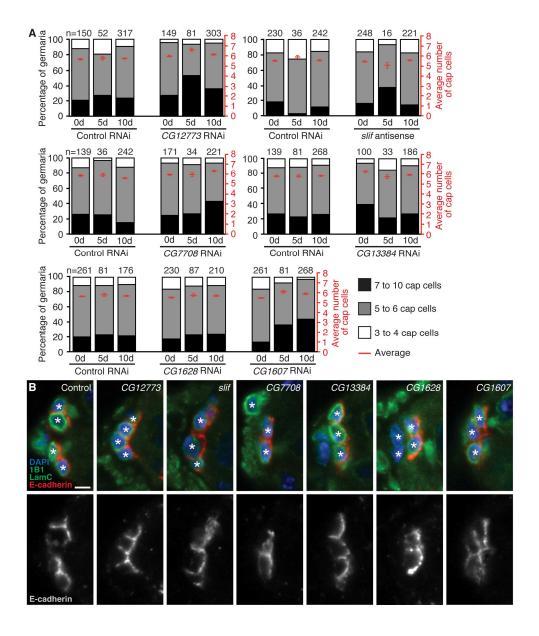
Supplemental Figure 2 Armstrong, Laws and Drummond-Barbosa

Fig. S2. 3.1Lsp2-Gal4 is not expressed in ovaries.

Analysis of *UAS-GFP* (green) induced by fat body Gal4 drivers shown in Figure 1 in adult ovaries shows that *3.1Lsp2-Gal4* has no ovarian expression. *Adh-Gal4* is expressed late follicle cells, including border cells (yellow arrow), *cg-Gal4* is expressed in stage 10 and later

follicle cells, and *r4-Gal4* is expressed in late dorsal-anterior follicle cells (arrowheads) and oviduct (white arrows). DAPI (blue) labels nuclei; 1B1 (red) labels cell membranes; LamC (red) labels nuclear envelopes of a subset of terminally differentiated cells. Scale bars: 100 μ m (main panels), 50 μ m (top inset), 50 μ m (bottom inset).

Supplemental Figure 3 Armstrong, Laws, and Drummond-Barbosa


Fig. S3. Reduced amino acid transport in adipocytes leads to higher rates of GSC loss in the ovary.

(A-C) Frequencies of germaria containing zero-or-one, two, or three-or-four GSCs at

different days after switch to 29°C for Gal80^{ts}; Lsp2-mediated induction of a UAS-slif

antisense or UAS-RNAi transgenes against amino acid transporters CG12773, CG7708,

CG13384, *CG1607*, *CG1628*, *CG12943* or *white* control. The same data used to calculate GSC number averages in Fig. 4 are plotted in (A). In (C), data at 10 days after switch to 29°C are shown. The reduction in average GSC numbers upon adipocyte inhibition of amino acid transport (Fig. 4) reflects an increased percentage of germaria showing zero-or-one GSC and decreased fraction retaining two or three-or-four GSCs. The right *y*-axis in (B,C) shows the average number of cap cells per germarium. Number of germaria analyzed is shown above each bar.

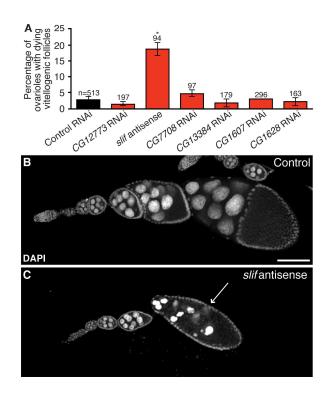
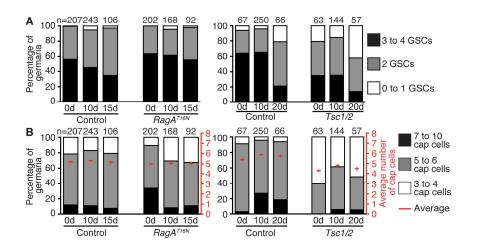

Supplemental Figure 4 Armstrong, Laws, and Drummond-Barbosa

Fig. S4. Reduced amino acid transport in adipocytes does not affect cap cell number or E-cadherin levels.

(A) Frequencies of germaria containing three-or-four, five-or-six, or seven-to-10 cap cells

(left y-axis), and average number of cap cells per germarium (right y-axis) at different days


after switch to 29°C for *Gal80^{ts}; Lsp2*-mediated induction of a *UAS-slif antisense* or *UAS-RNAi* transgenes against amino acid transporters *CG12773*, *CG7708*, *CG13384*, *CG1607*, *CG1628*, *CG12943* or *white* control. Number of germaria analyzed is shown above each bar. (**B**) Germaria from females at 10 days of adult adipocyte-specific knockdown of amino acid transporters or *white* control gene showing no obvious difference in levels of E-cadherin (red) at GSC-cap cell junctions. DAPI (blue) labels nuclei; 1B1 (green) labels fusomes; LamC (green) labels cap cell nuclear envelopes. Asterisks indicate cap cells. Scale bar, 2.5 μm.

Supplemental Figure 5 Armstrong, Laws and Drummond-Barbosa

Fig. S5. Adult adipocyte-specific knockdown of amino acid transporters does not disrupt vitellogenesis, except in the case of *slif*.

(A) Percentage of ovarioles containing dying vitellogenic follicles at 10 days of adipocyte knockdown of amino acid transporters. Number of ovarioles analyzed is shown above each bar. **P*<0.05, Student's *t* test. Error bars indicate mean \pm s.e.m. (**B**,**C**) DAPI-stained ovarioles from control (B) or *slif* (C) RNAi genotypes shown in (A). Arrow indicates degenerating follicle, recognized by the presence of pyknotic nuclei. Scale bar, 100 µm.

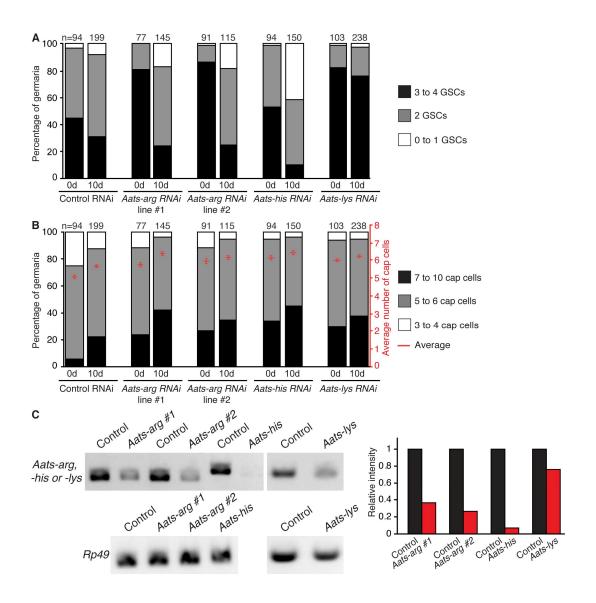

Supplemental Figure 6 Armstrong, Laws, and Drummond-Barbosa

Fig. S6. Reduced TOR signaling in adult adipocytes does not affect GSC or cap cell number.

(A,B) Frequencies of germaria containing zero-or-one, two, or three-or-four GSCs (A), or

three-or-four, five-or-six, or seven-to-ten cap cells (B) at different days after switch to 29°C

for *Gal80^{ts}; Lsp2*-mediated induction of dominant negative *UAS-RagA^{T16N}* or *UAS-Tsc1* and *UAS-Tsc2* (*Tsc1/2*) transgenes. The same data used to calculate GSC number averages in Fig. 6A are plotted in (A). The right *y*-axis in (B) shows the average number of cap cells per germarium. Number of germaria analyzed is shown above each bar.

Supplemental Figure 7 Armstrong, Laws and Drummond-Barbosa

Fig. S7. Adult adipocyte-specific knockdown of aminoacyl-tRNA synthetases causes a reduction in GSC, but not cap cell, numbers.

(A,B) Frequencies of germaria containing zero-or-one, two, or three-or-four GSCs (A), or

three-or-four, five-or-six, or seven-to-10 cap cells (B) at zero or 10 days after switch to 29°C

for *Gal80^{ts}; Lsp2*-mediated induction of *GFP* control, *Arginyl-tRNA synthetase (Aats-arg)*, *Histidyl-tRNA synthetase (Aats-his)*, or *Lysyl-tRNA synthetase (Aats-lys)* RNAi transgenes. The same data used to calculate GSC number averages in Fig. 7A are plotted in (A). The right *y*-axis in (B) shows the average number of cap cells per germarium. Number of germaria analyzed is shown above each bar. (C) RT-PCR analysis of hand-dissected fat bodies showing knockdown of amino acid transporters at 10 days of *Gal80^{ts}; Lsp2*-mediated induction of RNAi transgenes against *aminoacyl-tRNA synthetases* or *GFP* control. Note that *Aats-lys* knockdown was relatively inefficient and did not alter GSC number.

AAT ^a	Type ^b	RNAi	RNAi	Fat body
	21	transgene #1	transgene #2 ^c	expression ^d
$CG1607^{e}$	polyamine transporter	P{GD4651}v14925	P{KK107364}VIE-260B	larval/adult
CG1628	L-ornithine transporter	P{KK108506}VIE-260B	P{GD8885}v47475	adult
CG4991	n.s. ^f	P{GD3406}v30263	-	-
CG5535	cationic amino acid	P{KK100907}VIE-260B	-	-
	transporter			
CG7255	cationic amino acid	P{KK110010}VIE-260B	-	-
	transporter			
CG7708	proline:sodium symporter;	<i>P{KK109385}VIE-260B</i>	P{GD3648}v30302	-
	choline transporter			
CG7888	n.s.	P{GD2411}v37263	-	-
CG8785	n.s.	P{GD1961}v4650	-	-
CG9413	polyamine transporter	<i>P{KK101306}VIE-260B</i>	-	-
CG12531	polyamine transporter;	P{KK109373}VIE-260B	-	-
	cationic amino acid			
0010770	transporter	DURING 472 HUE 200D	P(CD31001 0000	1 1/ 1 1/
CG12773	sodium:potassium: chloride	<i>P{KK102472}VIE-260B</i>	<i>P{GD3189}v9899</i>	larval/adult
CC12042	symporter	DURKI 124CONUE 2COD		
CG12943	n.s.	P{KK112469}VIE-260B	-	-
CG13248	polyamine transporter; cationic amino acid	P{KK103406}VIE-260B	-	-
CG13384	transporter n.s.	P{KK102447}VIE-260B	P{GD1007}v44246	adult
CG13646	n.s.	P{GD257}v1571	-	adult
CG13743	n.s.	P{GD3488}v40974	_	-
CG16700	GABA:hydrogen	P{GD3405}v45188	_	_
0010/00	symporter	1 [005405]/45100		
CG17119	L-cystine transporter	P{GD3122}v51127	-	-
CG30394	n.s.	P{GD2127}v3470	-	-
CG32079	n.s.	<i>P{KK107121}VIE-260B</i>	-	-
dmGlut	glutamate transporter	P{TRiP.HMS01615}attP2	-	larval
kazachoc	potassium:chloride	P{TRiP.HMS01058}attP2	-	-
	symporter activity			
minidiscs	polyamine transporter;	P{GD453}v42485	-	adult ^g
	leucine import			
Ncc69	sodium:potassium:chloride	P{KK108763}VIE-260B	-	-
	symporter			
pathetic	n.s.	P{KK104735}VIE-260B	-	larval
slimfast	polyamine transporter;	slif antisense ^h	<i>P{GD12619}v45590</i>	larval ^h
	cationic amino acid			
	transporter			

Table S1. Amino acid transporters tested in this study

^a AAT, amino acid transporter. The *Drosophila* genome encodes 40 predicted amino acid transporters; for 26 of them, RNAi lines were available (www.flybase.org).

^b Type of amino acid transporter according to FlyBase annotation (<u>www.flybase.org</u>).

^c The second set of RNAi lines target sequences that are different from those targeted by the first set (stockcenter.vdrc.at).

^d Fat body expression is listed as reported in FlyBase, except where indicated. ^e The red font indicates amino acid transporters followed up on in this study.

^fn.s., not specified.

^g Adult fat body expression of *minidiscs* reported in Martin et al., 2000.

^h Larval fat body expression of *slif* and *UAS-slif* antisense transgene described in Colombani et al., 2003.

Gene	Forward	Reverse
CG1607	DDB788	DDB789
	(5'-AGTATCGGTGTGGGCTGTATTG-3')	(5'-CTGGCAGAAGTTGTTGTGTGTATTT-3')
CG12773	DDB763	DDB764
	(5'-CATGTTAATGCCCGACAG-3')	(5'-CATAGCTCTCGTCAGCGTC-3')
CG13384	DDB790	DDB791
	(5'-CTGGATCGGGGAGATGATGAAAT-3')	(5'-ACGCCACAAAGAGGAAGTAG-3')
Aats-arg	DDB796	DDB797
	(5'-CCGAACGATCTGCTATCCTAAA-3')	(5'-TCTTAGCCAGCTTCCATTCC-3')
Aats-his	DDB794	DDB795
	(5'-CCACATCGCCAAGGTCTATC-3')	(5'-ATCGAAGCTAACTCGCTTATCC-3')
Aats-lys	DDB792	DDB793
	(5'-GGCTCCTACAAGGTCATCTATC-3')	(5'-GGTATACGCGTTGCAAATCTC-3')
Gcn2	DDB811	DDB812
	(5'-ACACTGGCCCTAAGCCAATC-3')	(5'-GCCTTGCTGGTGAATATGCG-3')
Rp49	DDB137	DDB138
	(5'-CAGTCGGATCGATATGCTAAGC-3')	(5'-AATCTCCTTGCGCTTCTTGG-3')