

Fig. S1. Oocyte size distributions at 5 dpp comparing single X genotypes with XX from the respective crosses.

X^p, paternal X; X^m, maternal X; inset shows the distribution of 3050 mm diameter oocytes with a magnified scale. Oocyte size data were collected during the 'distributed point count' procedure (see Materials and Methods). Throughout this procedure, whenever a 'hit' occurred on an oocyte that was judged to have been sectioned through the middle an outline of the oocyte was 'drawn' using a computer mouse and the number of pixels was obtained. Areas of oocytes were determined based on the number of pixels per square for a grid of known area 'drawn' at the same magnification. The cross-sectional areas were then used to generate a frequency distribution of oocyte diameters as previously described (Burgoyne and Baker, 1985).

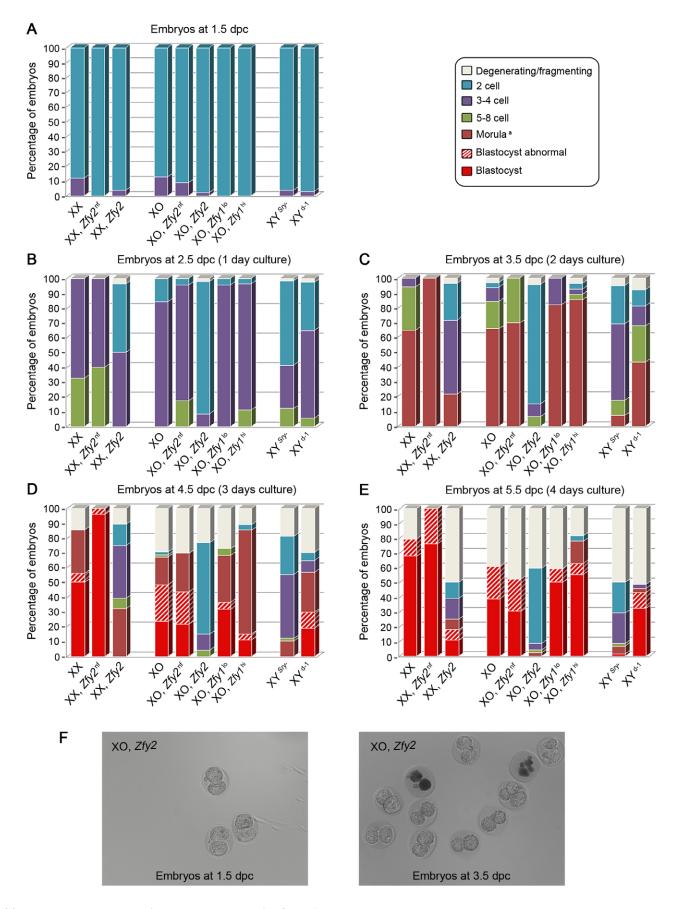


Fig. S2. Embryo development in culture scored daily from 1.55.5 dpc.

(A-E) Percentage of embryos by stage of development after 0, 1, 2, 3 and 4 days of culture. (F) Confirmation of visual viability assessments by dye exclusion tests. 2-cell embryos from XO, Zfy2 at 1.5dpc exclude trypan blue, as do 2-cell embryos scored as viable after two days of culture (3.5dpc). However, embryos scored as dead or fragmenting are strongly stained with trypan blue.

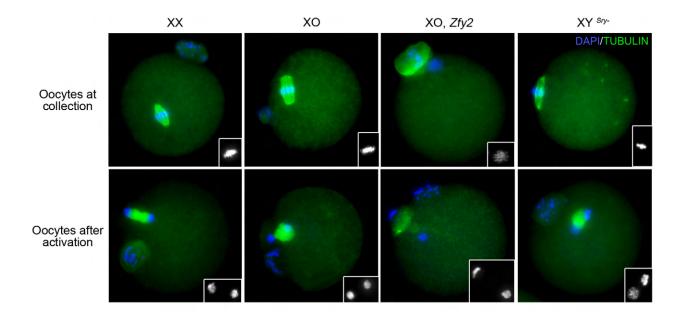


Fig. S3. Abnormal chromatin and spindle features at meiosis-2 in Zfy2 carriers.

Chromatin is stained blue with DAPI (insets provide a black and white image), and tubulin (and thus the spindle) is stained green. (A) Examples of oocytes fixed and stained at collection. As expected, **XX** and **XO** have intact 1st polar bodies with characteristic multiple condensed small chromatin masses, and a well-organised MII spindle and metaphase plate in the oocyte. **XO**,**Zfy2** has a strongly tubulin positive 1st polar body suggesting it has attempted to divide, but has no organised spindle or metaphase plate (likely a consequence of polar body death). There is no clear spindle associated with the oocyte chromatin (all the XO,**Zfy2** oocytes were scored as having a faint or undetectable spindle - Table S2). **XY**^{Sry-} has no visible polar body but there is a well organised spindle and metaphase plate in the oocyte. Only 56% of XY ^{Sry-} oocytes at collection had a clear well-organised spindle. (**B**) Examples of oocytes fixed and stained after activation. **XX**, **XO** and **XO**,**Zfy2** each have a 1st polar body and are at anaphase/telophase II, with the oocyte chromatin having separated into two masses with one mass moving into the forming 2nd polar body. 100% of XX oocytes, 50% of XO oocytes, and 76% of XO,**Zfy2** (and XY-Sy-) oocytes reached this stage (Fig. 7F). **XY**^{Sry-} has a 1st polar body and the oocyte chromatin has separated into two masses. However, the lower of the two masses has precociously decondensed. Precocious decondensation is a prevalent feature in **Zfy2** carriers (Fig. 7F).

Table S1. Analysis of variance of oocyte data relevant to the single X genotype comparisons

A. Identification of a major maternal effect on oocyte pool size of their daughters

Analysis of Variance Table for oocyte pool Source Prob Sum of Mean Term DF F-Ratio Squares Square Level A: Cross 2 3883733 1941866 0.42 0.671468 B(A): XX mother 9 4.196655E+07 4662950 4.95 0.006168* 12 1.131344E+07 942786.7 Total (Adjusted) 23 5.716372E+07

This ANOVA analysis shows that XX mothers from different crosses are equivalent but there are major differences between mothers irrespective of cross. Since each mother provided only one litter, the maternal effect may be a litter effect.

B. Identification of a reduced oocyte pool in XY Sry- females at 5dpp

24

Total

Analysis of Varian	ce Table f	or oocyte pool			
Source		Sum of	Mean		Prob
Term	DF	Squares	Square	F-Ratio	Level
A: Genotype	2	0.2276341	0.1138171	4.55	0.026177*
S	17	0.4254298	0.02502528		
Total (Adjusted)	19	0.653064			
Total	20				

Planned Comp	arison: XY ^{Sry-} vs. XC	(P=0.0078)	
Group XY ^{Sry-}	Females	` Mean ´	Comparison SE
XY ^{Sry-}	8	0.4976	0.0902
XO	5	0.7695	
Planned Comp	arison: XY ^{Sry-} vs. XY	^{,d-1} (P=0.1975. I	NS)

Planned Compa	INSON: AT VS. AT	(P=0.1975, NS)	
Group	Females	Mean	Comparison SE
XY ^{Sry-}	8	0.4976	0.0819
XY^{d-1}	7	0.6074	

This ANOVA analysis was carried out using the oocyte counts of the single X genotypes expressed as a ratio to the mean value for their XX siblings, thus compensating for the maternal effect identified in **A**. The analysis shows a significant effect of genotype on the size of the oocyte pool at 5dpp, and the planned comparisons reveal that this is due to a significant reduction in the pool size of XY^{Sry-} females relative to XO females.

C. Single X genotype comparisons at 28dpp

Analysis of Variand	ce Table f	or oocyte pool			
Source		Sum of	Mean		Prob
Term	DF	Squares	Square	F-Ratio	Level
A: Genotype	2	0.05977543	0.02988772	0.98	0.391923 (NS)
S	21	0.6406197	0.0305057		
Total (Adjusted)	23	0.7003952			
Total	24				

Planned Comparis			
Group XY ^{Sry-}	Females	Mean	Comparison SE
XY ^{Sry-}	8	0.3877	0.0873
ΥO	Ω	0.4631	

Planned Comparison: XY^{Sry-} vs. XY^{d-1} (P=0.1803, NS)

Group **Comparison SE Females** Mean

XY^{Sry-} 0.0873 8 0.3877

XY^{d-1} 8 0.5088

Analysis of Variance Table for growing oocytes

Source Sum of Mean **Prob** DF Term **Squares** Square F-Ratio Level

A: Genotype 2 0.02149437 0.01074719 0.24 0.785466 (NS)

21 0.9239169 0.04399604

0.9454113 Total (Adjusted) 23

Total 24

Planned Comparison: XY^{Sry-} vs. XO (P=0.8014, NS)

Comparison SE Mean **Females**

XY^{Sry} 0.7247 0.1049 8

XO 8 0.6980

Planned Comparison: XY^{Sry-} vs. XY^{d-1} (P=0.4971, NS)

Group **Females** Mean **Comparison SE**

8 0.7247 0.1049

XY^{Sry-}XY^{d-1} 8 0.6522

There are no significant differences between the single X genotypes at 28dpp.

D. XY^{Sry-} vs. XY^{d-1} comparisons at 35-56dpp

Analysis of Variance Table for oocyte pool

Alialysis of Vallalit	ce rable i	or oocyte poor			
Source		Sum of	Mean		Prob
Term	DF	Squares	Square	F-Ratio	Level
A: Genotype	1	0.03149262	0.03149262	3.29	0.099572
S	10	0.09559035	0.009559034		
Total (Adjusted)	11	0.127083			
Total	12				

Comparison: XY^{Sry-} vs. XY^{d-1} (P=0.0996, NS)

Comparison SE Group **Females**

6 0.1997218 0.0564

XY^{Sry-}XY^{d-1} 6 0.3021793

Analysis of Variance Table for growing oocytes

			,		
Source		Sum of	Mean		Prob
Term	DF	Squares	Square	F-Ratio	Level
A: Genotype	1	0.02241009	0.02241009	0.34	0.571028
S	10	0.6531672	0.06531672		
Total (Adjusted)	11	0.6755773			
Total	12				

Comparison: XY^{Sry-} vs. XY^{d-1} (P=0.5710, NS)

Comparison SE Group **Females** Mean XY^{Sry} 6 0.5716591 0.1476

 XY^{d-1} 6 0.6580885

There are no significant differences between XY^{Sry-} and XY^{d-1} at 35-56dpp

Table S2. Zfy2-dependent abnormalities originating before the 2-cell stage.

Table S2A. Polar body counts from photographs such as those in Fig. 7A.

	Numl	Number of 2-cell embryos		Notes
Mouse	0 PB	1 PB	2-3 PB	_
XO #1	0	4	7	
XO #2	0	6	7	The two blastomeres of the
XO # 3	0	5	5	embryos were of normal
XO # 4	0	4	4	shape and even in size.
Totals	0	19	23	shape and even in size.
Percentages	0%	45%	55%	
XO, Zfy2 #1	8	6	1	
XO, Zfy2 #2	8	3	3	Blastomeres and polar
XO, Zfy2 #3	4	4	1	bodies often very aberrant in
Totals	20	13	5	size and shape.
Percentages	53%	34%	13%	
XYSry-#1	2	5	1	
XY <i>Sry-</i> #2	11	2	1	Blastomeres often not of the
XY <i>Sry-</i> #3	4	4	0	same size and somewhat
Totals	17	11	2	misshapen.
Percentages	57%	37%	6%	

Table S2B. Polar body and blastomere nuclei data from DAPI-stained 1.5 dpc 2-cell embryos.

	Polar Body count			ВІ	Blastomere nuclei		
Mouse	0	1	2/3	Central	Eccentric	Multiple	
XO (1)	0	6	4	19	1	0	
XO (2)	0	5	2	10	4	0	
XO (3)	0	4	3	11	3	0	
Totals	0	15	9	40	8	0	
Percentages	0.0%	62.5%	37.5%	83.3%	16.7%	0.0%	
XO,Zfy2 (1)	9	3	1	15	10	1	
XO,Zfy2 (2)	9	3	1	9	15	1	
Totals	18	6	2	24	25	2	
Percentages	69.2%	23.1%	7.7%	47.1%	49.0%	3.9%	
XY ^{Sry-} (1)	3	6	0	9	7	2	
XY ^{Sry-} (2)	8	7	0	13	15	2	
Totals	11	13	0	22	22	4	
Percentages	45.8%	54.2%	0.0%	45.8%	45.8%	8.3%	

Table S2C. Meiotic stage assessed when oocytes collected

	Number of oocytes collected	Percentages of oocytes by stag		
Mouse	(females used)	MII	Not MII / faint MII	
XX	17 (3)	100.0	0.0	
XX, <i>Zfy2</i> ^{nf}	14 (4)	71.4	28.6	
XX,Zfy2	17 (4)	70.6	29.4	
хо	11 (3)	54.5	45.5	
XO, <i>Zfy2</i> XY ^{Sry-}	16 (4)	0.0	100.0	
XY Sry-	18 (4)	55.6	44.4	

^{*} The stage classification is based on the degree of spindle organisation: MII = complete,

^{&#}x27;faint' MII is incomplete, and 'Not MII' is no spindle (also see Fig. S3).

Table S3. List of genes significantly regulated by Zfy2 in GVoocytes.

- Tab1: 2655 genes found to be regulated by the functional Zfy2 transgene in XX oocytes (batch 2) when compared to XX wild type.
- Tab2: 359 genes significantly regulated in XX, Zfy2 and where the fold change was double that for any control genotype or batch effect.
- Tab3: Scatter plot comparison between Batch 1 XX, Eif2s3y, Zfy2 and Batch 2 XX, Zfy2 samples.
- Tab3: Clustering analysis using DAVID
- Tab4: Genes showing concordant regulation in both XX, Zfy2 and XY^{dom} relative to XX control.

Download Table S3

Table S4. List of primers used for semi-quantitative and quantitative RT-PCR.

Gene	Primer ID	Primer sequence	Annealing Temp	Amplicon size	References
Primers for RT-PC	CR		•		
Zfy1	Zfy1-F	GCCAGTGCTCTCTTAAACCAA	60°c	386bp	(Vernet et al., 2011)
	Zfy1-R	TGAGTACACAAAGTCCCAGCA			
Ubaly	Ubaly-FP1	CGACAGCAACTTTCACATGG	60°c	226bp	(Royo et al., 2010)
	Ubaly-R	GAGCCAGAGGTGCAGAAAAG			
Smcy/Kdm5d	o96-Smcy 1F	GGATGAACTGCCTGCTATGCT	60°c	187bp	Current paper
	o97-Smcy 1R	CAATCGCTGAAGCAGCTCAC			
Eif2s3y	Eif2s3y-F1	CCAGGGACCAAAGGAAACTT	60°c	250bp	Current paper
	Eif2s3y-R1	TAGCCTGGCTTTCTTTCACC			
Uty	o50 Uty-F	ACCTGAAGATTATTGGGGTG	60°c	146bp	Current paper
	o51 <i>Uty</i> -R	CCAAATCACCAGGTCGTTGA			
Dby/Ddx3y	o46 <i>Ddx3y-</i> F	GTATGGCTTATGAACACCAC	60°c	111bp	Current paper
	o47 <i>Ddx3y</i> -R	CATTTGCAGAACCACTGCTC			
Usp9y	o42 <i>Usp9y</i> F	GGGAAGTTTCTGAACATGGG	60°c	145bp	Current paper
	o43 <i>Usp9y</i> R	GGTCCTTCATCCAAAGACAC			
Zfy2 Germ cell	Zfy2-F	GCCAGTGCTATGTTACACCAT	60°c	386bp	(Vernet et al., 2011)
	Zfy2-R	TCTGTATGCATTGTCCCAGCA			
Zfy2 Spermatid	o2696- <i>Zfy2</i> ex1a F	CTGTTGTGGTTCTCGTAGCAG	58°c	192bp	(Decarpentrie et al., 2012)
	o4018-Zfy2 ex5 R	CTATTCCATCAAATAACGAC			
H2al2y	H2Al2y-FP	CCGTGTAGATCGTTTCCTTG	60°c	206bp	Current paper
	H2Al2y-RP	AGAGTTGGTGGAGCTGTTCC			
Rbmy	Rbmy-F	GCGTCTTCCAGAAGAGATGAGT	60°c	113bp	(Ellis et al., 2005)
	Rbmy-R	GAGTGGTAATTGCCATAGTCACAC	j		
Dazl	Dazl-F	CCTCCAACCATGATGAATCC	60°c	234bp	(Vernet et al., 2011)
	Dazl-R	TGAACATTCATTGGGCAAAA			
β-actin	β-actin-F	GGCACCACACCTTCTACAATG	60°c	352bp	Current paper
•	β-actin-R	GTGGTGGTGAAGCTGTAGCC			
Primers for qRT-P	PCR				
Zfy1 total	o4047 <i>-Zfy1</i> ex8 F	AAGTCACAGATCAGAGCACT	58°c	278bp	(Decarpentrie et al., 2012)
	o4048- <i>Zfy1</i> ex10 R	CTCATCTTGGTTTAAGAGAGCA			
Zfy1 with exon6	o2836- <i>Zfy1</i> ex5 F	AAGAACTGAAGGCCATGGATG	60°c	132bp	(Decarpentrie et al., 2012)
	o2714- <i>Zfy1</i> ex6 R	TACTTCCACAACAATCTGGTCAC			
Zfy1 without exon6	o2832- <i>Zfy1</i> ex5/7 F	GATGGAATAGTGGATGAACC	60°c	205bp	(Decarpentrie et al., 2012)
	o2833- <i>Zfy1</i> ex8 R	CATTGCCATTTTTGGTCTCACTC			
Zfy2 total	o54- <i>Zfy2</i> ex7 F	GGATGAGCCTAGCAAAACAG	60°c	194bp	Current paper
	o55- <i>Zfy2</i> ex8 R	CATTGCCATTGTCGGTCTCAC			
Zfy2 total	o2985- <i>Zfy2</i> ex10 R	CTGGCAGTGGCATTCTGCAC	60°c	452bp	Current paper
	o2986- <i>Zfy2</i> ex7 F	GAGCCTAGCAAAACAGATCATG			

References:

Decarpentrie, F., Vernet, N., Mahadevaiah, S.K., Longepied, G., Streichemberger, E., Aknin-Seifer, I., Ojarikre, O.A., Burgoyne, P.S., Metzler-Guillemain, C., and Mitchell, M.J. (2012). Human and mouse ZFY genes produce a conserved testis-specific transcript encoding a zinc finger protein with a short acidic domain and modified transactivation potential. Hum Mol Genet 21, 2631-2645.

Vernet, N., Mahadevaiah, S.K., Ojarikre, O.A., Longepied, G., Prosser, H.M., Bradley, A., Mitchell, M.J., and Burgoyne, P.S. (2011). The Y-encoded gene *Zfy2* acts to remove cells with unpaired chromosomes at the first meiotic metaphase in male mice. Curr Biol *21*, 787-793.

Ellis, P.J.I., Clemente, E.J., Ball, P., Toure, A., Ferguson, L., Turner, J.M.A., Loveland, K.L., Affara, N.A., and Burgoyne, P.S. (2005). Deletions on mouse Yq lead to upregulation of multiple X- and Y-linked transcripts in spermatids. Hum Mol Gen 14, 2705-2715.

Garcia, M.A., Collado, M., Munoz-Fontela, C., Matheu, A., Marcos-Villar, L., Arroyo, J., Esteban, M., Serrano, M., and Rivas, C. (2006). Antiviral action of the tumor suppressor ARF. EMBO J 25, 4284-4292.

Royo, H., Polikiewicz, G., Mahadevaiah, S.K., Prosser, H., Mitchell, M., Bradley, A., de Rooij, D.G., Burgoyne, P.S., and Turner, J.M. (2010). Evidence that meiotic sex chromosome inactivation is essential for male fertility. Curr Biol 20, 2117-2123.