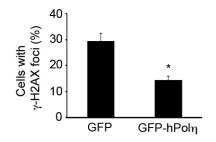
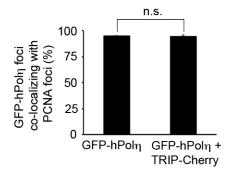

Figure S1. RT-PCR and hatch rates of *dPolη*-derived embryos. (A) RT-PCR confirming loss of *dPolη* expression in *dPolη*-derived embryos. *RP49* served as a loading control. (B) Bar graph showing hatch rates of *dPolη*-derived embryos are similar to that of wild-type embryos. *Df=Df(3L)BSC284*.


Figure S2. Stage distribution of $dPol\eta^{Exc2.15}$ embryo collections. Embryos (0-2 hours) collected from females of indicated genotypes were fixed and stained for α -tubulin and DNA to assess developmental stage. $dPol\eta^{Exc2.15}$ -derived embryos progressed through syncytial development at a rate similar to that of wild-type embryos. n.s. indicates non-significance.

Sensitivity to hydroxyurea				
	% homozygotes/hemizygotes			
Genotype	-HU	+HU	<i>p</i> -value	
mei-41 ^{RT1}	52.6 (435)	33.0 (299)	<0.0001	
$dPol\eta^{Exc2.15}$	29.5 (298)	19.6 (138)	<0.05	
dPolη ^{Exc2.15} /Df	34.8 (322)	12.5 (178)	<0.0001	


Figure S3. Sensitivity of *dPoln* mutants to hydroxyurea (HU). The following mating crosses were performed (10 males and 10 virgin females per vial): *mei-41/Y* males x *mei-41/FM7a* females, *dPoln*^{Exc2.15}/*TM3* males x *dPoln*^{Exc2.15}/*TM3* females, and *Df/TM3* males x *dPoln*^{Exc2.15}/*TM3* females. After 48 hours of egg laying, adults were removed from vials. Larvae were grown on food \pm 20 μ M HU and allowed to develop for 2 weeks. Numbers of adult progeny were scored. Data are represented as the ratio of homo-zygous or hemizygous adult progeny to total adult progeny expressed as a percentage. Expected Mendelian ratios were 50% and 33% for *mei-41* (X chromosome) and *dPoln* (3rd chromosome) homozygotes/hemizygotes, respectively. The total number of adult flies scored is shown in parentheses. *p*-values were calculated using a two-tailed Fisher's exact test. *Df=Df(3L)BSC284*.

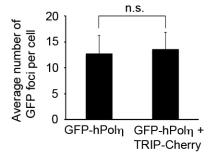

Figure S4. Quantification of ubiquitylated HA-dPol η in embryos. Representative immunoblot from His-ubiquitin assays in *Drosophila* embryos is shown in Fig. 7B. Quantification of the intensity of the major ubiquitylated HA-dPol η band for each genotype was performed using ImageJ with normalization to the intensity of the corresponding total HA-dPol η band on immunoblots of embryonic lysates. A small but significant reduction in the intensity of the major ubiquitylated HA-dPol η band was observed in *nopo*-derived embryos compared to wild-type embryos. Asterisk, *p*<0.05, paired Student's t-test, n=5 experiments. Data are shown as mean ± s.e.m.

Figure S5. Overexpression of GFP-hPOL η does not increase double-stranded break formation. HeLa cells were transfected as indicated, fixed, and stained for gamma-H2AX. Quantification of gamma-H2AX foci revealed that overexpressing GFP-hPOL η decreases the percentage of gamma-H2AX-positive cells. Asterisk, p<0.01.

Figure S6. Co-localization frequency of GFP-hPOLn foci with PCNA foci. HeLa cells were transfected as indicated, fixed, and stained for PCNA (endogenous). Quantification of GFP-hPOLn foci revealed that co-expression of TRIP-mCherry does not alter the frequency of co-localization of GFP-hPOLn foci with PCNA foci. n.s. indicates non-significance.

Figure S7. TRIP does not alter the average number of hPOLn nuclear foci per cell. HeLa cells were transfected as indicated and fixed. Quantification of GFP-hPOLn foci revealed that co-expression of TRIP-mCherry has no effect on the average number of GFP-hPOLn foci per cell.

Table S1. Primers used for RT-PCR.

Gene	Primer sequences
RP49	5'-TCCTTCCAGCTTCAAGATGACC-3'
	5'-CTTGGGCTTGCGCCATTTGTG-3'
поро	5'-CATCAGCAGCTATGTCGAGCA-3'
	5'-GAAGATTGAATACTTTTCACTGAGATC-3'
hTRIP	5'-GCTCTTCTTTGATCTTGCCCA-3'
	5'-CCACAGGAAGGTGTCCAGCTTGGCCT-3'
dPolη	5'-AGCCAGGTTCCATTCTTCTCGTCA-3'
	5'-AATTCGGTGAGGTGGTGTGTGTGAGA-3'
dPolı	5'-CCAATATCCGTGCGTACCGATGTGGA-3'
	5'-CGAGTCGAACTTGCGCAACAC-3'
dRev1	5'-CGATCTGGCACACGAACTCAATGT-3'
	5'-TGCTCGAATCCAACAAGAACTGGC-3'

Table S2. Primers used for generating DNA constructs.

Insert*	Primer sequence
nopo .	5'-TTTTGGCACAAAT-3'
genomic region	5'-GTCCACAGCCATG-3'
NOPO	5'-ATGTTGAACTTAAACT-3'
	5'-CTTATTTGCCCAGGTTA-3'
TRIP	5'-ATGCCTATCCGTGCTC-3'
	5'-CTCAACGACCACAGGA-3'
hPolŋ	5'-ATGGCTACTGGACAGGATCG-3'
	5'-CTAATGTGTTAATGGCTTAAAAAATGATTCCAATG-3'
N-hPolŋ	5'-ATGGCTACTGGACAGGATCG-3'
	5'-TTACTAATTGCAACAGCCACCATTGTAC-3'
C-hPolŋ	5'-ATGGTACAATGGTGGCTGTTGCAATTAG-3'
	5'-CTAATGTGTTAATGGCTTAAAAAATGATTCCAATG-3'
hPolĸ	5'-ATGGATAGCACAAAGGAGAAGTG-3'
	5'-CTTTTTGTTCTTGTTACAGCCTTCTG-3'
N-hPolĸ	5'-ATGGATAGCACAAAGGAGAAGTG-3'
	5'-TTACACATTCTTCAACTTAATGGTAACAGTTCTACC-3'
C-hPolĸ	5'-GATCGGCCGGCCAATGGGTAGAACTGTTACCATTAAGTTGAA
	GAATGT-3' 5'-GACTGGCGCGCCCTTTTTGTTCTTGTTACAGCCTTCTG-3'
dPolŋ	5'-ATGTCCAGCGCACGCA-3'
	5'-CTAATTGCTTTGGCTGAAAAACTGGG-3'
N-dPolŋ	5'-ATGTCCAGCGCACGCA-3'
	5'-TTACACTAATGCCAAGGAACTTGATAGC-3'
C-dPolŋ	5'-ATGGCTATCAAGTTCCTTGGCATTAGTG-3'
	5'-CTAATTGCTTTGGCTGAAAAACTGGG-3'
dPolı	5'-ATGGACTTCGCTAGCGTACTC-3'
	5'-TCACTTATTCCGGAGAAAGTAGCG-3'
N-dPolı	5'-ATGGACTTCGCTAGCGTACTC-3'
	5'-TTAGTTGTACCTTGCTCACACCAGTTTC-3'
C-dPolı	5'-ATGGAAACTGGTGTGAGCAAGGTACAA-3'
	5'-TCACTTATTCCGGAGAAAGTAGCG-3'
*Ductain (fr	ull-length or fragment) encoded by cDNA insert is listed unless otherwise indic

*Protein (full-length or fragment) encoded by cDNA insert is listed unless otherwise indicated.