Supplementary Material

A

TVGR/Dex Induction of Wnt Signaling

B

Figure S1: TVGR activates canonical Wnt signaling. (A) Quantification of secondary axis induction by ventral vegetal injection of TVGR at the 4 -cell stage with representative tadpoles from each class. (B) RT-PCR on 5 whole embryos or 25 animal caps treated with the indicated reagents. -RT: reaction done in the absence of Reverse Transcriptase, epi. ker: epidermal keratin (epidermis), mus. act.: muscle actin (mesoderm) (C) Animal caps treated with the indicated reagents.

Figure S2: Intron 1 of sall4 binds $\boldsymbol{\beta}$-catenin but does not mediate a Wnt signal. (A) Using animal caps to screen for direct transcriptional targets of Wnt in neural tissue. (B) qPCR on 15-25 animal caps treated as indicated on the X -axis. The Y-axis shows expression relative to odc. meis3 and hoxb9 serve as controls for known direct and indirect targets of Wnt, respectively. (C) Quantification of dorsalization in uninjected embryos (open bars) and embryos injected animally with 500 pg FLAGtagged β-catenin RNA ($250 \mathrm{pg} /$ blastomere) at the 2-cell stage (filled bars) as scored by the dorsoanterior index (DAI). Error bars: 1 SEM. Images show a representative uninjected (UC) embryo with a DAI of 7 (normal) and a representative embryo with a DAI of 6 (kinked axis). (D) Schematic of the genomic locus of sall4 in Xenopus laevis (Xenbase.org). Blue boxes indicate exons and yellow circles indicate the location of putative TCF/LEF binding sites. Black ovals show the locations of the zinc-finger domains. Numbers indicate the position of putative binding sites relative to the transcription start site (TSS). (E) Chromatin immunoprecipitation of FLAG-tagged β-catenin in late gastrulae/early neurulae. Open bars represent uninjected embryos and closed bars represent embryos injected with 500 pg FLAGtagged β-catenin ($250 \mathrm{pg} /$ blastomere at the 2-cell stage). Error bars: 1 SEM per cent input for each measurement. (F) Luciferase reporter assays in HEK293 cells treated with or without BIO and/or mouse FGF. Error bars: 1 SEM. All means were compared by one-way ANOVA followed by Tukey post-hoc analyses (*: p<0.05).

Figure S3: $c d x 2$ is activated by canonical Wnt signaling and not affected by Sall4 knockdown (A) qPCR on 5 whole embryos or 15 to 25 animal caps treated according to the conditions indicated on the X-axis. The Yaxis shows expression relative to odc. Error bars: 1 SEM. (B-C) $c d x 2$ expression at stage 18 . Dorsal views with the anterior oriented towards the top. (B) Uninjected control embryo. (C) Embryo injected with 20 ng Sall4 MO in one animal-dorsal cell at the 4-cell stage.

Figure S4: sall1 is activated by canonical Wnt signaling and expressed during early embryogenesis. (A) qPCR on 5 whole embryos or 15 to 25 animal caps treated according to the conditions indicated on the X-axis. The Y-axis shows expression relative to odc. Error bars: 1 SEM. (B-E) Whole-mount in situ hybridizations of sall1 in Xenopus laevis embryos. (B) Whole mount stage 10 embryo stained for sall1, dorso-vegetal view with the dorsal lip of the blastopore oriented towards the top. (B') Sagittal section of stage 10.5 embryo stained for salll expression, animal pole is to the top and dorsal is to the right. (C-D) Dorsal views of indicated neurula stage embryos, anterior is oriented towards the top. (C'-C") Transverse sections of stage 12 embryos stained for sall1, (C') anterior and (C'") posterior. (D'-D") Transverse sections of stage 15 embryos stained for sall1, (D') anterior and ($\mathrm{D}^{\prime \prime}$) posterior. ($\mathbf{E}^{\prime}-\mathbf{E}^{\prime \prime}$) Transverse sections of stage 18 embryos stained for sall1, (E^{\prime}) anterior and ($\mathrm{E}^{\prime \prime}$) posterior. ($\left.\mathrm{B}^{\prime}, \mathrm{C}^{\prime}-\mathrm{E}^{\prime \prime}\right) 50 \mu \mathrm{M}$ sections, (C'-E") dorsal oriented towards the top. No: notochord, S: somite, PSM: presomitic mesoderm.

Figure S5: Injected embryos express functional FLAG-tagged $\boldsymbol{\beta}$-catenin. (A) Western blot for the FLAG epitope in injected embryos. Actin serves as the loading control. (B) Ventralization of embryos injected with β catenin MO and co-injection with FLAG-tagged β-catenin RNA. F- β cat: FLAG-tagged β-catenin.

Figure S6: Sequence of sall4 intron 1 in Xenopus laevis. Sequence from X. laevis genome (xenbase.org) coordinates: Scaffold1115:232,200..237,499. Putative TCF/LEF binding sites are indicated in red. Priming sites used for ChIP-qPCR are highlighted in yellow. Underlined sequences show TCF/LEF sites tested in ChIP.

GAGTCGCACTTTGCTTCTCTGGCTGCGCTTTATAGAGCGCAAGTGGCATTTAAACCCGAGAGGAGCGTGGCTGC TGCGCTCCATTCCCTTCCGAGCTGTCCCACCGGCCAAGGTGATCGAATACAGGGCTGGATTGTCTTCCCTCTCA
 АТTATTATTATTATTATGATTATTATTAATAGTATTATTATTTAATTGTAGCAATTCCAGGGTATATTGACCCC ACCTGTGGGGCTTATGGATCCATGTGATTGGAAGCACCTGTGGCTGTAATCATATATTTTTTTTTTTTTTTTTT TTTTTTTTTTTTTTTTTAATACCGTTGGTAGTGTGCTGCTTATTTCTAGTGTATAATTAAGCAAAGAAAGGAAG AAAACAGGGGTGACTAGTTAGTCAССССТСААССССТССССТСТСАСАСССССАСССТСССТТССАТССТТСАТ
 AGAGGGAACCAGCAGAAGCAGCAACCTGTGTGTCTGTGCTTGGTGTATGGGTAGGTTAATTATCCTTCATATAT TCTAGGGACTGGGGTTAATGTGTTTGTACCTGCTTCTTAATTCCGCTTATCGAAATAGCAGAAGGGGGTACACA AAGTTTTTATGTAGTATCTGTGTATATTCCTGTTATCTTATTAAATCTCTATTTTATATTGTGTATTTCATAAT СTCAATGAGGGGCACAGTCCTTGCCATTACATTCCTATTCATCTGCATNNNNNNNNNNNNNNNNNNNNNNNN NN NNNCCTCTATTTTCATTCGTTC TCСАССТTTAGTTCСАААТСТААТTAGСААТТСТАТGTСАСТСССТССССТТТАТТСССТTTATTACAATGCAA TTTTATTTTTGTTGTCTTGGAACATACTTGGTGACTAATTAACAATCCAGGAAACCAGCAGGTGGGGGAGTTGG AAGGTACAAAGCTACATATTGTAAATTATCATATGAACAAAGAGGTCGCCAATGCCTCTGTTTATCATCAGATA CTGGGATTGCCCCCCCTGTTAATCTCCAAGGTTAATCTTTCAAAGACTTCCATTTAGTGTTACTAGACCATTAA АТАТАтTTATTTTTCGTCTATTGTTTGGTTATAGAGTCTGATCTGGCAACTCTCAATTAATATAAACTGATAAA CAGAAGAGCTACAGATGTAAGAATTTGAAATCCGCAAAGCATTTCTTTCAAATGAATGTATGGGTACCAGTAGA GTTGTTTTGGGGGGGGGGCATGTTGGGTTTGTGTGTAGGTGGAAACATAGGGCAACAGTTGAATAGTAGGTGCT AGGACAAAATGGCATTTGTTGACCTTTGTTGAAGTTCAGACCCTAGAACCTTGTGACAGCCAAAGCATGGGAGT TGCAGTTTAACAGATGAAGGTTGAACAGTCTAGTCTAAATGGCTTGCAATAATGGGGCCTGCAATATCTATTCT TСССССТСАGAGTCCTTTACTAACAAAGCCCTTGGTATAGATCTGCAAATGGAACTTGCATATCCCCCTAACTT TACTTTTTTCTTTTTTTAAACTGGAAAAAAATGCTTCGTTTGTGGACCTTGTGCACGCTTGCAGTGTAGTGCCT AAGTACAGGCATAAACATAAACTATTTTATTTCCATTAAGTGGTCTGCAACAAAACTAATTCCTGGCTGGGCTG TTAACAAAGCTAATTCATCACAGCAGGGGTCGGGGCTGTCAGTAAGGTACTTGGGGCCAGATGGCTGCAAAACG GCAATCAGGAACTTGCTGGTGTGAGTGACACTCTATTAATCGTGGCGTTAAATATTAAACACACTTTAACAAAT

TATTTAAATGAGATAAATATCTATCTСТСТСТАТАТСТСТАAAGAGAAATCACACCACTTTTTGAAGATTTTTT ТАТААТСТАСТАТТТСАСССТТАСТТTTСТGGTTTTTATTATGAGTGTTGTCTAGAGGTTTATGTAATGATTTC ATCACTGGGCATATACACGTGGAGGAGGCTTCCTTAACTGGTGGGTTTTTCTTTAGCTAAGGGTCAGTTGGGAT TTGGATGCGGCGACTAGGTTAACCACACAGTCCTTATCTGTTACAGGTGAAGGGTTAAACGAGGCCAAACTGGT TTTTGTAGTTGTCCTTTTGTACAGTGTAAGGTGCCGGTGGGCCTGCTGGTATAACCTCTGGCTCCTTAGTGTGG GTGGCAGGTTAATGTCAGGACTGATCCCAGTAGGGTTTGTCCATTGCCAATTATGTGACTATTGGTGACCGATT TTGTTCACCTCCGATCTGTTGTGGAGACCAGAAAGATTCTGATGATTTTTCTTTAGTGGTTTGTCTTTTTAGAG GCAGTTTTGCTTCAGTAAAAATATTTCTTGCTCAATGTGAAATTTCGACTGACAATGAGGAATAGATATGGGCT GGGCCAGGCAGCTCTGAGTCAAGTGGGGTCCACATAATTTTTTTTTTTTTTTCATTAATTAAAATGTTTCCATA CCTCCAATGCTGCCTTTTGCCTGGTGCAGGGAAGGATTTGTATAGAATATATGCCAGCTTAATGGCTGTACAGA AGTTGGTCAGCATACAGGGCATGTTCATCTGTGCTGCTGAATAAGATCCGTTTTTTGGGTTTACTTTTCTGTAG TCCCTCAGTGATCTTTGTGTAAATCCACGTGTAGTATTTACCATACATGTGCTGAGCACTAACACAGGATGAGT GAATCAGAAAAGGAACTGACTGTAGCTGTGAATAGATGGCCTCAAGCATCTGCTCTGGGAGATGGGGGTAAGTG ATCGGCCGCTTCTCATTTTTAGAGCAGGGATGATCGGTGCTTCACTAAACCAAATACTCCCACCAGCAATGGCT GAGAGTTATACCCAACATTTAAGTGCAGGCTCACATATTGTACAACTTGAGTTTTTAGGTGTCAAGTGAACTTC СTGCTAGAATAAATTTATTTTTTTTTAGAGGGAGAATTAATATTTTACCTGCAAAGGGTCTGTATAATATTACA TTTTGCATAATTGGCACGGAAGGCTCTCAATCACTTTTAACACATCAACATAACTGACAATAGGCTTGCATCTC СССТССССААТССАТTTGTTAGTGATTTAATCTAAACCCCTGCTGACTTCACTGCATTCTTCTAACTTATTGGA TAAATAGATGCTGAGATAACATTCCTGAGATTCAGCAGTGGAGATGCACCCATGTACAGTATCCCCCCTGCTCT TTGTTTTTTTTTTTGTTTTTTTATTAGCATTATTTAAGATCCCCTTCACTGTTTTATTTTTAATTTCATTGAAA TTACCAATTTCATCACTGAAACTACAGGAGATATTGTTGATGGAATAAAGTGTAGGTTTTATTTTCAAGTTACT ACTGCTAGAACTATCAATGGATCTTTACATTTAGTACTTTTTAGGTAGAGTTATTGTTTTCTGCAGAGATGTCA GCAAAAGAGCGTGTATGTACTATTGCAGAAACAAGAAAAATAAAGAAATTGCATCCTGCCCGTGGGACCTTAAG CGTTAACGCCGGTTATGCTCAGCTTGTTTGGAAACCACTGGAGGCCAACTTAAGATATTTTGCGACATAAAATC AGACTCСTTAAAAGAGAGATGAATTAAAGCTAGCCATAGACGTGCAGATTAGACAAACGAACGTCTTTTCCAAT АСТССТАССТGСАAATAACCATTCAGATTAATATAAAGTTGCAAAGAGAACAAATTGCACGATCGGGCCATTTA TTGACTGGCGGCAATCGTATGAAAGTTATGTTTGACAAACGGTAGTTACTGTCTCCCATTGATAGCTGTAGCCG АТСТАААТСТTTTAACCTGTCCGATTGACCGCGTGAAACGAAAAATGTCTTAACATTCCACAGTTTCTGAAAAT CGTACAAAACTTTTTCATGTGATCGTATCTGTGTGTCTAGGGCGGCGATGCGGGACATGATTTTGTATAGAATT GTTCCAGTACAATTGCCCATAATTGTCTATTCAAATGTGGTTGCTGCAATTGTGCAGCTAATAAATTAGCTCTT GTATCTTCTAGCAATGGTGAATCTGTTGGGTATAGGACCTGTAAGTTCTATTAATTGGCCAAACAATATCTGGT TAACTTTTTTTTTTTTTAACCTTTTACAG

Figure S7: Sall4 does not rescue Dkk1-induced anteriorization. (A-D) Anterior views of whole-mount in situ hybridazations for otx2 and krox20 on Xenopus laevis embryos. (A) Uninjected control (UC). (B) Embryo injected with 400pg $d k k l$ RNA. (C) Embryo injected with 400pg $d k k l$ and 500pg sall4 RNA. (D) Embryo injected with 500 pg sall4 RNA.

Table S1: List of all primers used. RT-PCR: Conventional RT-PCR. qPCR: quantitative PCR. WMISH: Used to make a probe for whole mount in situ hybridization. ChIP: Used for qPCR on immunoprecipitated chromatin.

Gene	Forward	Reverse
$c d x 2$ (qPCR)	5'-ACATACCGGGATCCAAGACA-3'	5'-CAGCCTGAGTCTGCTGGATT-3'
eeflal (RT-PCR/qPCR)	5'-CCCTGCTGGAAGCTCTTGAC-3'	5'-GGACACCAGTCTCCACACGA-5'
en2 (RT-PCR)	5'-CAGCCTGGGTCTACTGCAC-3'	5-CTTTGCCTCCTCTGCTCAGT-3'
epidermal keratin (RTPCR)	5'-GACCTGGAAGGGAAGATCC-3'	5'-GAAGAGCCAGCTCATTCTCAA-3'
hoxb9 (qPCR)	5'-TACTTACGGGCTTGGCTGGA-3'	5'-AGCGTGTAACCAGTTGGCTG-3'
hoxb9 (RT-PCR)	5'-CTCCAGCAGCCAAATTCTCT-3'	5'-CAGTTGGCTGAGGGGTTG-3'
krox20 (RT-PCR)	5'- CCAGTGACTTTTGGTAGTTTTGTG-3	5'-TGGACGAGTAGGAGAAATCCA-3'
meis3 (ChIP)	5’- CACTGTAAGTTATTGCCTCAAAGG-3	5'-AGCTTGTAATACTTGTGGGCTTT-3'
meis3 (qPCR)	5'-CAGGATACAGGGCTCACGAT-3'	5'-CTTGGGGCTGCTGTGTAATC-3'
meis3 (RT-PCR)	5'-ATGATCGTGATGGCTCTTCC-3'	5'-CCCTGTGCGATTAGATTGGT-3'
muscle actin (RT-PCR)	5'-GACTCTGGGGATGGTGTGAC-3'	5'-AGCAGTGGCCATTTCATTCT-3'
$\boldsymbol{o d c}$ (RT-PCR/qPCR)	5'-GGGCTGGATCGTATCGTAGA-3'	5'-TGCCAGTGTGGTCTTGACAT-3'
otx2 (RT-PCR)	5'-TATCTCAAGCAACCGCCATA-3'	5'-AACCAAACCTGGACTCTGGA-3'
pou25 (qPCR)	5'-GGGCCACCACTATCCCTAAT-3'	5'-GTGTGTAGCCCAGGGACACT-3'
pou60 (qPCR)	5'-AGTTTGCCAAGGAGCTGAAA-3'	5'-GGACTCAAAGCGGCAGATAG-3'
pou91 (qPCR)	5'-ACTTATTTGCCCCGTCTCCT-3'	5'-CCCCATTCAGATCACTTGCT-3'
sall1 (qPCR)	5'-GAGAGGGGTCAAATCCATCG-3'	5'-GGAGGTGGTGGATTTTCATTC-3'
sall (WMISH probe)	5'-CTTTCAAAGCATGGTGAGCA-3'	5'-ATGGCACGATGGACACTGTA-3'
sall4 (qPCR)	5'-TGTCAAAGGATGAGCATTCG-3'	5'-CATGCGGTCAGAGGGTACTT-3'
sall4 (WMISH probe)	5'-CTTGGTGCGCACTTATCTCA-3'	5'-GCCTCAGATTGTGTGGGACT-3'
sall4 intron 1 (ChIP)	5'- GGGAGTTGGAAGGTACAAAGC-3’	5'-AACCAAACAATAGACGAAAAATAAA-3'
xmlc2 (ChIP)	5'- TGGGATATTTTACTGAACACAATG-3'	5'-CGTCCTGTGCCACCTAATG-3'

Gene	Forward	Reverse
WT sall4 intron 1 (Luciferase assay)	5'- CACTCCCTCCCCTTTATTCC -3'	5'-САСТСССТССССТТТАТТСС-3'
sall4 intron 1 TCF/ LEF site $\mathbf{+ 2 3 4 7}$ (mutagenesis)	5'GGAGTTGGAAGGTACGGG GCTACATATTG-3'	5'- CAATATGTAGCCCCGTACCTTCC AACTCC-3'
sall4 intron 1 TCF/ LEF site $+\mathbf{2 3 8 7}$ (mutagenesis)	5'- CATATGAACGGGGAGGTC GCCAATG-3'	```5'- CATTGGCGACCTCCCCGTTCATAT G-3'```
sall4 intron 1 TCF/ LEF site +2465 (mutagenesis)	5'- GGTTAATCTTTCGGGGACT TCCATTTAGTG-3'	5'- CACTAAATGGAAGTCCCCGAAA GATTAACC-3'

Table S2: Genes with >2-fold expression (direct Wnt activation vs. anterior neural) found by RNA-Seq. The data represents cold increase as measured by fragments per kilobase of exon per million reads (FPKM). The nature of this quantification can lead to high fold changes in lowly expressed genes and likely accounts for the massive fold increases calculated in genes with the highest differential expression.

Gene	Clone ID	Fold Increase		
hnRNP H3	gi\|52138902	gb	BC082630.1	$1.51235 \mathrm{E}+11$
H3 histone, family 3B	gi\|27503243	gb	BC042290.1	$1.03963 \mathrm{E}+11$
Glutamate ammonia ligase	gi\|49256010	gb	BC073448.1	39422399227
Protein phosphatase type 1 alpha, catalytic subunit	gi\|27695193	gb	BC041730.1	2824225487
Ki-67	gi\| $115527315\|\mathrm{gb}\| \mathrm{BC} 124560.1$	1131777.541		
copper chaperone for superoxide dismutase	gi\|50418348	gb	BC077488.1	3919.698435
FoxI4.2	gi\| $50418055\|\mathrm{gb\mid}\|$ BC078036.1	1329.542265		
Ephrin-A4	gi\| $183985625\|\mathrm{gb}\| \mathrm{BC} 166129.1$	1297.844383		
smad4	gi\| $54037962\|\mathrm{gb\mid}\| \mathrm{BC} 084196.1$	1053.601949		
Cdx-2	gi\|84105446	gb	BC111473.1	600.0062069
Eukaryotic translation initiation factor 3 subunit 10	gi\|35505403	gb	BC057711.1	414.3164277
Churchill	gi\|114107852	gb	BC123207.1	369.3076365
pip4k2a	gi\| $120537387\|\mathrm{gb}\|$ BC129059.1	328.1431677		
hnRNPk	gi\|27882468	gb	BC044711.1	319.4817015
MGC83026	gi\|49118646	gb	BC073670.1	226.469437
tpno2	gi\| $54673692\|\mathrm{gb}\| \mathrm{BC} 084978.1$	222.1449285		
nol12	gi\|114107789	gb	BC123345.1	151.6234281
epithelial V-like antigen 1	gi\| $50415563\|\mathrm{gb}\| \mathrm{BC} 077583.1$	147.2011472		
sfrs6	gi\|28422194	gb	BC044265.1	126.0892513
XIRG protein-like	gi\|213623421	gb	BC169722.1	87.788455
prickle1	gi\|68533725	gb	BC098954.1	83.19938866
ZFN384	gi\|50415185	gb	BC077403.1	69.76482898

Gene	Clone ID	Fold Increase		
RAC-beta serine/threonine-protein kinase B	gi\|47939912	gb	BC072041.1	62.12571541
ccbl-2	gi $\|30046518\| \mathrm{gb} \mid \mathrm{BC} 051239.1$	44.93558411		
p80 katanin	gi\|66910749	gb	BC097654.1	40.55422632
zeb2	gi\|54648610	gb	BC084972.1	33.47771521
Zmiz1	$\mathrm{gi}\|51513014\| \mathrm{gb} \mid \mathrm{BC} 080428.1$	30.23438945		
Angiopoietin 4/5	gi\| $189442243\|\mathrm{gb}\| \mathrm{BC} 167504.1$	27.19110778		
HCF-1	gi\|52138923	gb	BC082658.1	26.78440995
CCR4-NOT transcription complex, subunit 10	gi\|50416369	gb	BC077237.1	21.48403283
fam107a/b MGC78851	gi\|51261937	gb	$\mathrm{BC}^{\text {c }} 079918.1$	21.17179772
Nucleoporin Seh1B MGC82845 protein	gi\|49118558	gb	BC073561.1	19.13482551
PI3K related SMG1 hypothetical protein MGC98890	gi\|68226704	gb	BC098320.1	17.94963894
Epsin-2 hypothetical protein MGC81482	gi\|46249599	gb	BC068837.1	16.4173713
srsf7	gi\|50603926	gb	BC077393.1	16.33581603
sf3b4	gi\|28374169	gb	BC045264.1	15.37049865
PPTC7 MGC81279 protein	gi $\|49257211\| \mathrm{gb} \mid \mathrm{BC} 071109.1$	13.98198898		
meis3	gi\|54673770	gb	$\mathrm{BC}^{\text {c }} 084920.1$	13.07065969
origin recognition complex, subunit 6 homolog-like	gi\|50603595	gb	BC077746.1	13.01809093
DAXX ? hypothetical protein LOC446279	gi\|86577707	gb	BC112947.1	12.67764239
ACSL4 hypothetical protein LOC100174803	gi\|189442239	gb	BC167498.1	11.62060714
Necap2 MGC83534 protein	gi\|50927256	gb	BC079728.1	10.9853218
Timp3 tissue inhibitor of metalloproteinases-3	gi\|38014484	gb	BC060423.1	10.67580536
frizzled homolog 7	gi\|27503170	gb	$\mathrm{BC}^{\text {c }} 042228.1$	9.299494092
Serine/threonine/tyrosine-interacting protein B	$\mathrm{gi}\|54311224\| \mathrm{gb} \mid \mathrm{BC} 084791.1$	9.188383287		
UBADC1 hypothetical protein MGC115132	gi\|62471528	gb	BC093557.1	8.970846126

Gene

Cdca A7L transcription factor RAM2
Klf10 ? hypothetical protein MGC98877 ivns1abp influenza virus NS1A binding protein

MGC80567 protein
LCHN? hypothetical protein MGC114999

RABGAP1L hypothetical protein MGC52980

PTN1 pleiotrophin MGC84465 protein arrb1 arrestin, beta 1

Txnrd3 Thioredoxin reductase 2 MGC81848 protein

Foxil or Foxi4.2a fork head protein
LIMS1-b LIM domain hypothetical protein MGC81174

LMO7 LIM domain containing cDNA clone MGC:180040
arrdc3 arrestin containing hypothetical protein MGC131006

CANT1 Calcium activated nucleotidase similar to $\mathrm{Ca} 2+$-dependent endoplasmic reticulum nucleoside diphosphatase

D7 protein
Dact1 dapper 1 Antagonist of beta-catenin FRODO

RASSF7 Ras assiciation domain containing MGC78972 protein

Sox11 XLS13B protein
Myt1 cDNA clone MGC: 196991
zmiz2 MGC86475 protein
ZC3H7B zinc-finger CCCH-containing 7B MGC80522 protein

SAP130 HDAC MGC83894 protein

Clone ID

| gi\|116487713|gb|BC126014.1 | 8.574819986 |
| :---: | :---: |
| gi\|62089536|gb|BC092147.1 | 7.695378855 |
| gi\| $49898869\|\mathrm{gb}\| \mathrm{BC} 076641.1$ | 7.664198955 |
| gi\| $50417996\|\mathrm{gb}\| \mathrm{BC} 077854.1$ | 7.544735234 |
| gi\| $71050977\|\mathrm{gb}\| \mathrm{BC} 098994.1$ | 7.224153034 |
| gi\|27694685|gb|BC043775.1 | 7.11745345 |
| gi\|49257697|gb|BC074426.1 | 6.911246415 |
| gi\| $49904092\|\mathrm{gb}\| \mathrm{BC} 076815.1$ | 6.832358987 |
| gi\|51704105|gb|BC081053.1 | 6.824096832 |
| gi\| $51258369\|\mathrm{gb}\| \mathrm{BC} 080044.1$ | 6.805288292 |
| gi\|47939771|gb|BC072204.1 | 6.795291868 |
| gi\|197245592|gb|BC168520.1 | 6.755182581 |
| gi\| $80476391\|\mathrm{gb}\| \mathrm{BC} 108545.1$ | 6.57050044 |
| gi\|27370857|gb| $\mathrm{BC}^{\text {c }} 041215.1$ | 6.486609662 |
| gi\| $58702035\|\mathrm{gb}\| \mathrm{BC} 090198.1$ | 6.413210477 |
| gi\| $50418314\|\mathrm{gb}\| \mathrm{BC} 077380.1$ | 6.403341734 |
| gi\|84105479|gb|BC111512.1 | 6.017970041 |
| gi\|47124741|gb|BC070707.1 | 5.989392572 |
| gi\|213626262|gb|BC170264.1 | 5.974437792 |
| gi\| $51513014\|\mathrm{gb}\| \mathrm{BC} 080428.1$ | 5.658053905 |
| gi\| $50418254\|\mathrm{gb}\| \mathrm{BC} 077837.1$ | 5.638059804 |
| gi\| $50415582\|\mathrm{gb}\| \mathrm{BC} 077587.1$ | 5.587991945 |

Gene

PCNA similar to proliferating cell nuclear antigen

Stx 19 syntaxin 19 hypothetical LOC494752

HMG-box protein HMG2L1
Kif20a hypothetical LOC495414
slc 7 a 3 solute carrier family 7 (cationic amino acid transporter, $\mathrm{y}+$ system), member 3

Lmo7 cDNA clone MGC:180040
Mark2 MAP/microtubule affinityregulating kinase 2

Anp32b MGC80871 protein cyclin A2

PPPDE2 peptidase domain containing MGC84710 protein

CTDP1 FCP1 serine phosphatase ornithine decarboxylase-2

Ube2c hypothetical LOC496302
Efr3a MGC83628 protein
Dlg7 discs large hypothetical protein MGC116559

STXBP3 hypothetical protein MGC115462 syntaxin binding protein 3 (stxbp3)

Acy-3 aspartoacylase-3
PTDSS2 cDNA clone MGC:179871
Tcf-7 transcription factor 7 (T-cell specific, HMG-box)

1sp1 lymphocyte specific protein 1hypothetical protein LOC100158340

NPHP3 nephronophthisis 3 MGC80264 protein

Med 15 Mediator complex subunit 15 ARC105 protein

Clone ID

gi|27371152|gb|BC041549.1
gi|52354747|gb|BC082852.1
gi|213625180|gb|BC169998.1
gi|54648449|gb|BC084922.1
gi|27503399|gb|BC042222.1
gi| $197245592|\mathrm{gb}| \mathrm{BC} 168520.1$
gi|27694574|gb|BC043730.1
gi|49118408|gb|BC073408.1 4.77985399
gi|50417439|gb|BC077260.1
gi|49256350|gb|BC074444.1
gi| $62185666|\mathrm{gb}| \mathrm{BC} 092306.1$
gi|28838468|gb|BC047954.1
gi|57032917|gb|BC088818.1
gi|51950039|gb|BC082437.1
gi| $68534624|\mathrm{gb}| \mathrm{BC} 099363.1$
gi| $72679360|\mathrm{gb}| \mathrm{BC} 100235.1$
gi| $116487526|\mathrm{gb}| \mathrm{BC} 125990.1$
gi| $197246680|\mathrm{gb}| \mathrm{BC} 168517.1$
gi|51261404|gb|BC079972.1
gi| $115528236|\mathrm{gb}| \mathrm{BC} 124864.1$
gi|50603779|gb|BC077320.1
gi|47123916|gb|BC070536.1

Fold Increase

5.340877685
5.239206209
5.171640761
5.055010856
4.989471538
4.861028301
4.821716572
4.76329664
4.724302826
4.712553945
4.690222394
4.676640452
4.653269077
4.501586994
4.472242676
4.452697089
4.234011971
4.200569032
4.124150256
4.066245125
4.029208683

Gene

cyclin E3
Fam60a hypothetical protein MGC115222
AHCTF1 AT hook containing transcription factor 1 MGC83673 protein Rhebl1 Ras homolog enriched in brain like 1 hypothetical LOC495056

RNF8a ring finger protein (C3HC4 type) 8

CCNT2 cyclin T2 MGC81210 protein
Tmed2 transmembrane emp24 domain trafficking protein 2 coated vesicle membrane protein, mRNA (cDNA clone MGC:52758 IMAGE:4684109

Mta1 metastatic associated 1 MGC83916 protein

MAPK8/Jnk1 mitogen-activated protein kinase 8

PSMD4 26S proteasome subunit
Poldip3 polymerase delta interaction protein 3 hypothetical protein MGC114944

DNAJC5B HSP cDNA clone MGC: 83536

NCBP2 Nuclear cap binding protein 2
FXDY FXDY domain containing ion transport

Ano5 Anoctamin 5 or Tmem16e
Not Annotated
Ttc30a tetratricopeptide repeat domain 30a

F2rll Coagulation factor 2 receptor like 1
CSDA cols shock protein domain containing A

FUS Fused in Sarcoma?
Exol exonuclease 1
Cfp complement factor properdin

Clone ID

| gi\|58701930|gb|BC090214.1 | 3.970372822 |
| :---: | :---: |
| gi\|66910763|gb|BC097689.1 | 3.940864045 |
| gi\| $49903664\|\mathrm{gb}\| \mathrm{BC} 076775.1$ | 3.892143367 |
| gi\| $54037975\|\mathrm{gb}\| \mathrm{BC} 084211.1$ | 3.882231045 |
| gi\|28279439|gb|BC046256.1 | 3.801782364 |
| gi\| $51895950\|\mathrm{gb}\| \mathrm{BC} 081000.1$ | 3.755306852 |
| gi\|28277265|gb|BC044095.1 | 3.747391508 |
| gi\| $51950045\|\mathrm{gb}\| \mathrm{BC} 082445.1$ | 3.743645989 |
| gi\|28422153|gb|BC046834.1 | 3.733178442 |
| gi\|66910701|gb|BC097551.1 | 3.729782795 |
| gi\|62471555|gb|BC093543.1 | 3.720246762 |
| gi\|51703523|gb|BC081115.1 | 3.720172358 |
| gi\|49117074|gb|BC072902.1 | 3.701358817 |
| gi\|125859119|gb|BC129686.1 | 3.694185141 |
| gi\| $50418049\|\mathrm{gb}\| \mathrm{BC} 077486.1$ | 3.642280513 |
| gi\|62739385|gb|BC094151.1 | 3.628720112 |
| gi\| $47938700\|\mathrm{gb}\| \mathrm{BC} 072174.1$ | 3.547737229 |
| gi\|57033014|gb|BC088935.1 | 3.518659172 |
| gi\| $161611734\|\mathrm{gb}\| \mathrm{BC} 155913.1$ | 3.51654861 |
| gi\|49522197|gb|BC074437.1 | 3.505453855 |
| gi\|54035217|gb|BC084102.1 | 3.494289274 |
| gi\| $50415018\|\mathrm{gb}\| \mathrm{BC} 077925.1$ | 3.468804465 |

Fold Increase

3.970372822

3.940864045
3.892143367
3.743645989
3.733178442
3.729782795
3.720246762
3.720172358
3.701358817
3.694185141
3.642280513
3.628720112
3.547737229
3.518659172
3.51654861
3.505453855
3.494289274
3.468804465

Gene	Clone ID	Fold Increase		
Ferritin light chain	gi\|34785676	gb	BC057216.1	3.464575104
cdc 25 c	gi\|213626377	gb	BC169346.1	3.456754005
SLC44a1 solute carrier family 44 member 1	gi\|52354612	gb	BC082837.1	3.306234736
PCF11 cleavage and poly-adenylation factor	gi\|50414592	gb	BC077233.1	3.277333059
Slc9a1 or NHE3 solute carrier family 9 member 3	gi\| $157422994\|\mathrm{gb}\| \mathrm{BC} 153791.1$	3.274941479		
Anksla Ankyrin repeat and sterile alpha motif domain containing la	gi $\|47682305\| \mathrm{gb} \mid \mathrm{BC} 070831.1$	3.249886264		
ap2b1 adaptor-related protein complex 1 beta 1 subunit	gi\| $120538239\|\mathrm{gb}\| \mathrm{BC} 129531.1$	3.240669681		
Not Annotated	gi $\|76780224\| \mathrm{gb} \mid \mathrm{BC} 106027.1$	3.21623043		
Ctnnd1 Catenin (Cadherin associated protein) delta-1	$\mathrm{gi}\|213623207\| \mathrm{gb} \mid \mathrm{BC} 169434.1$	3.210767484		
GCAT Glycine C-acetyltransferase	gi\|28704125	gb	BC047258.1	3.210735376
beta arrestin	gi $\|49256118\| \mathrm{gb} \mid \mathrm{BC} 072973.1$	3.173896459		
slc9a3r2	gi\| $55778573\|\mathrm{gb}\| \mathrm{BC} 086464.1$	3.167840103		
CTDP1 (carboxy-terminal domain, RNA polymerase II, polypeptide A) phosphatase, subunit 1	gi $\|51950263\| \mathrm{gb} \mid \mathrm{BC} 082378.1$	3.162965383		
MAX bHLH	gi\|47123961 $\|\mathrm{gb}\| \mathrm{BC} 070710.1$	3.144295944		
MPV171	gi $\|51261416\| \mathrm{gb} \mid \mathrm{BC} 079982.1$	3.11285403		
Fibronectin 1	gi $\|49114986\| \mathrm{gb} \mid \mathrm{BC} 072841.1$	3.110364743		
Spicing factor (sfrs5)	gi $477717980\|\mathrm{gb}\| \mathrm{BC} 070967.1$	3.1059201		
transmembrane protein 45B	gi\| $120538262\|\mathrm{gb}\| \mathrm{BC} 129609.1$	3.030355684		
lysine (K)-specific demethylase 6A (kdm6a)	gi\|50603932	gb	BC077424.1	3.026903047
RalGDS/AF-6	gi\| $84105479\|\mathrm{gb}\| \mathrm{BC} 111512.1$	2.963378492		
Mek-2	gi\|27694983	gb	BC043913.1	2.955122189
calpain 2, (m/II) large subunit (capn2)	gi\|39645066	gb	BC063733.1	2.924548179
PHD finger protein 12 (phf12)	gi\|46249573	gb	BC068803.1	2.89562217
pax interacting (with transcriptionactivation domain) protein 1 (paxip1)	gi\| $50417566\|\mathrm{gb}\| \mathrm{BC} 077588.1$	2.822971349		

Gene

mediator complex subunit 16 (med16)
xRMD-2 microtubule-associated protein tyrosine kinase 2 (tyk2)
methyltransferase like 3 (mettl3)
glycine amidinotransferase (Larginine:glycine amidinotransferase) (gatm) syntaxin 5 (stx5)
inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase beta (ikbkb) G-2 and S-phase expressed 1 (gtse1)

RBL1
nucleoporin 93 kDa (nup93)
embryonic ectoderm development (eed) ring finger and CCCH-type domains 1 (rc3h1)
integrin, beta 5
$\operatorname{ataxin} 2(\operatorname{atxn} 2)$
chromosome 19 open reading frame 2 (c19orf2)

PRP4 pre-mRNA processing factor 4 homolog (prpf4)
protein phosphatase methylesterase 1 (ppme1)
orthodenticle homeobox 2 (otx2-a)
chromosome 13 open reading frame 34 (c13orf34)

DAZAP1
FSHD region gene $1(\mathrm{frg} 1)$
serine/threonine kinase 11 interacting protein (stk11ip)
carboxy-terminal kinesin 2
survival of motor neuron 2 , centromeric (smn2)

Clone ID

| gi\|62471580|gb|BC093546.1 | 2.822152806 |
| :---: | :---: |
| gi\|58702063|gb|BC090235.1 | 2.803700074 |
| gi\|49118136|gb|BC073112.1 | 2.790804764 |
| gi\|46249483|gb|BC068672.1 | 2.782222309 |
| gi\|28838491|gb|BC047973.1 | 2.746369891 |
| gi $\|76779222\| \mathrm{gb} \mid \mathrm{BC} 106704.1$ | 2.704962367 |
| gi\|47939754|gb|BC072192.1 | 2.686442963 |
| gi\|62471553|gb|BC093540.1 | 2.683239948 |
| gi $\|47123210\| \mathrm{gb} \mid \mathrm{BC} 070856.1$ | 2.680418663 |
| gi\|27924241|gb|BC045089.1 | 2.672333338 |
| gi\| $50603665\|\mathrm{gb}\| \mathrm{BC} 077425.1$ | 2.655016847 |
| gi $\|46250191\| \mathrm{gb} \mid \mathrm{BC} 068669.1$ | 2.646867856 |
| gi\|49899756|gb|BC076844.1 | 2.636182901 |
| gi\|66910767|gb|BC097692.1 | 2.634583223 |
| gi\| $50415135\|\mathrm{gb}\| \mathrm{BC} 077366.1$ | 2.630865817 |
| gi\|51703477|gb|BC081044.1 | 2.62131998 |
| gi\|50418398|gb|BC077600.1 | 2.617432826 |
| gi\|50417481|gb|BC077357.1 | 2.616883223 |
| gi\|49523107|gb|BC075159.1 | 2.599294339 |
| gi\|50604139|gb|BC077252.1 | 2.585999275 |
| gi\|49256477|gb|BC074376.1 | 2.555875944 |
| gi\|47682952|gb|BC070809.1 | 2.553165597 |
| gi $\|54038135\| \mathrm{gb} \mid \mathrm{BC} 084431.1$ | 2.538623487 |
| gi\|46249513|gb|BC068721.1 | 2.535840144 |

Gene	Clone ID	Fold Increase		
sall1 (Sal-like 1)	gi\|37590272	gb	BC059284.1	2.505331347
NIMA (never in mitosis gene a)-related kinase 2 (nek2)	gi\|27696903	gb	BC043822.1	2.503175185
ZF-containing (posterior protein)	gi\|213623475	gb	BC169799.1	2.493496644
drebrin-like (dbnl)	gi\|49257631	gb	BC074277.1	2.479066307
jumonji domain containing 6 (jmjd6-b)	gi\|28277358	gb	BC045252.1	2.4687995
inhibitor of DNA binding 3, dominant negative helix-loop-helix protein (id3-a)	gi\|27696824	gb	BC044039.1	2.448101925
chaperonin containing TCP1, subunit 8 (theta) (cct8)	gi\|67678231	gb	BC097574.1	2.447348026
LIM domain containing preferred translocation partner in lipoma (lpp)	gi\|62740239	gb	BC094110.1	2.445439839
cytochrome c-1 (cyc1)	gi\|71052231	gb	BC099350.1	2.442233526
KIAA0182 (kiaa0182)	gi\| $120537359\|\mathrm{gb}\| \mathrm{BC} 129052.1$	2.438699731		
5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (atic)	gi\|76779775	gb	$\mathrm{BC}^{\text {c }} 06381.1$	2.42732299
ribonucleoprotein A1a (hnrnpa1)	gi\|47938743	gb	BC072090.1	2.419006697
caspase 3 , apoptosis-related cysteine peptidase casp3	gi\|68533747	gb	BC098991.1	2.408087828
ubiquitin-conjugating enzyme E2G 1 (UBC7 homolog) (ube2g1)	gi\|28839012	gb	BC047985.1	2.407955386
drebrin-like (dbnl)	gi\|49257631	gb	BC074277.1	2.388809202
PTK7 protein tyrosine kinase 7 (ptk7)	gi\| $148922111\|\mathrm{gb}\| \mathrm{BC} 146640.1$	2.387741643		
integrator complex subunit 2 (ints2)	gi\|47125091	gb	BC070524.1	2.387717766
PRP4 pre-mRNA processing factor 4 homolog B (prpf4b)	gi\| $125858002\|\mathrm{gb}\| \mathrm{BC} 129065.1$	2.375801846		
Transmembrane protein 33 (tmem33)	gi\|49903380	gb	BC076764.1	2.371301594
non-SMC condensin II complex, subunit D3 (ncapd3)	gi\|49116983	gb	BC073714.1	2.363179599
SIN3 homolog B, transcription regulator $(\sin 3 b)$	gi\| $120538596\|\mathrm{gb}\| \mathrm{BC} 129063.1$	2.353559822		
splicing factor, arginine/serine-rich 18 (sfrs 18)	gi\|47940261	gb	BC072160.1	2.350873591
mediator complex subunit 23 (med23)	gi\|39645714	gb	BC063725.1	2.349851184

Gene	Clone ID	Fold Increase		
phospholipase A2-activating protein (plaa)	gi\| $115528262\|\mathrm{gb}\| \mathrm{BC} 124847.1$	2.344309729		
minichromosome maintenance complex component 4 (mcm4-b)	gi\|49115033	gb	BC072870.1	2.342847336
NOP2/Sun domain family, member 2 (nsun2)	gi\|66912075	gb	BC097814.1	2.339817652
general transcription factor IIE, polypeptide 2, beta 34 kDa (gtf2e2)	gi\|58403335	gb	BC089287.1	2.320004209
Rho GTPase activating protein 19 (arhgap19)	gi\|48734660	gb	BC072338.1	2.309370554
CCR4-NOT transcription complex, subunit 10 (cnot10-b)	gi\| $46250097\|\mathrm{gb}\| \mathrm{BC} 068748.1$	2.298100702		
lysine (K)-specific demethylase 3A (kdm3a-a)	gi $477506877\|\mathrm{gb}\| \mathrm{BC} 070982.1$	2.296984096		
zinc finger and BTB domain containing 44 (zbtb44)	gi $\|47124748\| \mathrm{gb} \mid \mathrm{BC} 070714.1$	2.293259115		
phosphatidylinositol glycan anchor biosynthesis, class T (pigt)	gi\|52354598	gb	BC082818.1	2.284755462
heterogeneous nuclear ribonucleoprotein A3 (hnrnpa3)	gi\|213625122	gb	BC169881.1	2.283526595
Putative ortholog of von Hippel-Lindau binding protein 1 (Prefoldin subunit 3)	gi\| $163916339\|\mathrm{gb}\| \mathrm{BC} 157499.1$	2.278221284		
nucleoporin 37 kDa (nup37)	gi\|51703531	gb	BC081128.1	2.271537693
activating transcription factor 1 (ATF1)	gi\|61403334	gb	BC092037.1	2.266325959
Nedd4 family interacting protein 2 (ndfip2)	gi\|50924805	gb	BC079714.1	2.262854343
	gi\|33416619	gb	BC055957.1	2.260893298
proteasome (prosome, macropain) 26 S subunit, ATPase, 3 (psmc3)	gi\|28422358	gb	BC046948.1	2.253753391
family with sequence similarity 109 , member B (fam109b)	gi $47722977\|\mathrm{gb}\| \mathrm{BC} 070645.1$	2.237428018		
translation initiation factor 4E family member 3 (eif4e3-a)	gi\|49257962	gb	BC071126.1	2.230893103
ets variant gene 4	gi $\|50417509\| \mathrm{gb} \mid \mathrm{BC} 077414.1$	2.224884491		
G kinase anchoring protein 1 (gkap1-a)	gi\|49118875	gb	BC073450.1	2.208726268
zinc finger transcription factor SALL4	gi\|52138969	gb	BC082637.1	2.190818022

Gene

chromobox homolog 5 (cbx5)
CCR4-NOT transcription complex, subunit 6-like (cnot6l-a)
uridine-cytidine kinase 2 (uck2)
YY1 transcription factor (yyl-b)
karyopherin alpha 4 (importin alpha 3) (kpna4)
syntaxin 5 (stx5)
PRP4 pre-mRNA processing factor 4 homolog B (prpf4b)
oxoglutarate (alpha-ketoglutarate) dehydrogenase (lipoamide) (ogdh)
acidic (leucine-rich) nuclear phosphoprotein 32 family, member B (anp32b)
AT hook containing transcription factor (ahctf1)
proline-rich nuclear receptor coactivator (pnrc2-b)
YY1 transcription factor
Ptk7
H3 histone, family 3B (H3.3B) (h3f3b)
bromodomain containing 1 (brd1)
mllt6
RAS oncogene family (rab18)
RAB6A, member RAS oncogene family (rab6a)
transcription factor 3 (E2A immunoglobulin enhancer binding factor E12/E47) (tcf3)
cell division cycle 20 homolog (cdc20)
sema domain, transmembrane domain (TM), and cytoplasmic domain, (semaphorin) 6D (sema6d)
lethal giant larvae homolog 1 (llgl1)

Clone ID

```
2.18484743
2.17052701
2.153018907
2.144522678
2.143067042
2.132374185
2.120332678
2.110063412
2.104752746
gi \(|55250536| \mathrm{gb} \mid \mathrm{BC} 086281.1 \quad 2.095665156\)
gi \(|54038003| \mathrm{gb} \mid \mathrm{BC} 084247.1 \quad 2.080782448\)
\(\begin{array}{ll}\text { gi }|50415555| \mathrm{gb} \mid \mathrm{BC} 077581.1 & 2.079401267 \\ \text { gi }|38014809| \mathrm{gb} \mid \mathrm{BC} 060500.1 & 2.074966481\end{array}\)
2.074966481
2.05094159
2.046475407
2.041361526
2.03028667
2.027277987
2.026584776
2.012178568
2.010828849
2.000831812
```

Fold Increase

