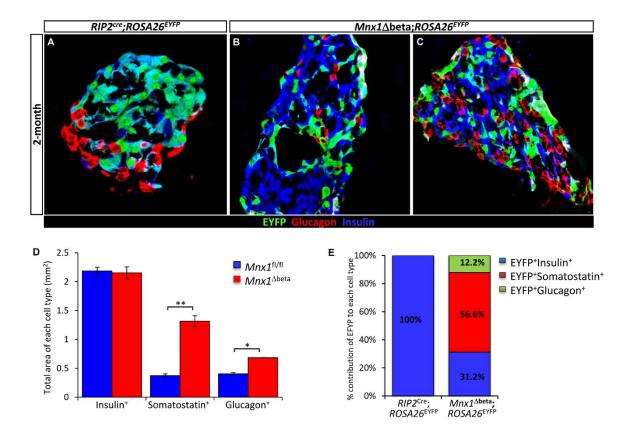
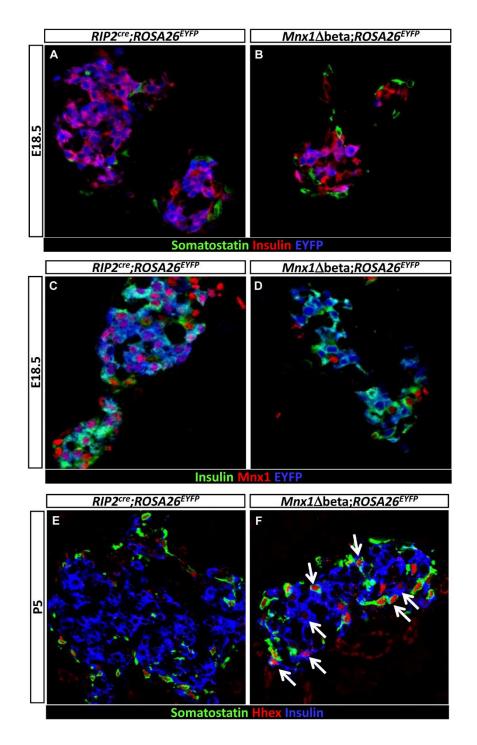
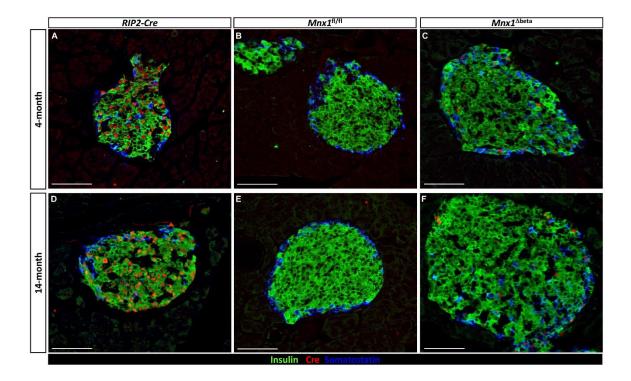


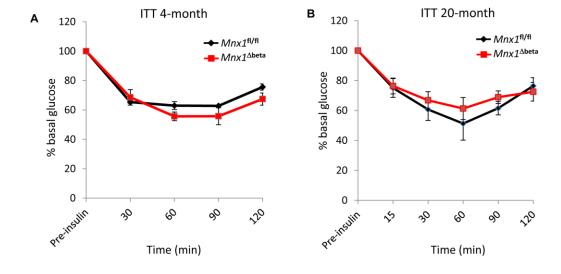
Supplementary Fig. 1 Verification of *Mnx1* floxed allele using germ-line activated Cre line (*EIIA*^{Cre}). (A) Schematic showing generation of *Mnx1* global null mice by crossing $Mnx1^{fl/fl}$ mice to the germ line deleter $EIIa^{Cre}$. (B, C) Gross morphology of E18.5 gut show the absence of dorsal pancreas (demarcated in red dotted line), whereas ventral pancreas (delineated by blue dotted line) develop normally in the $Mnx1^{null}$ mice. We are not able to test for the presence of the truncated protein with the currently available specific Mnx1 antibody using immunofluorescence, because this antibody was raised against the C-terminal region of Mnx1, which is absent when exon 3 is deleted. Nevertheless, the $EIIa^{Cre};Mnx1^{FL/+}$, Ngn3-Cre; $Mnx1^{FL/+}$ and RIP2-Cre; $Mnx1^{FL/+}$ mice are normal and do not exhibit any defects in motor neuron function, pancreatic endocrine differentiation and β-cell function, suggesting that the truncated protein is either not made or is degraded, not exhibiting any dominant negative effects.

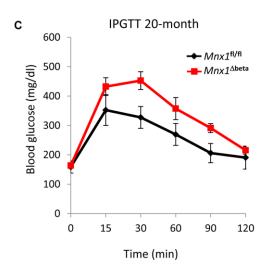


Supplementary Fig. 2 The remaining β cells in $Mnx1^{\Delta \text{endo}}$ are not mature. Immunofluorescence analysis show that the remaining β cells in the $Mnx1^{\Delta \text{endo}}$ expressed (A, B) Pdx1, and (C, D) Nkx6.1 as in control. (E, F) But MafA protein become localized to the cytoplasm compared to the nucleus localization in control β cell, indicating that these mutant β cells are immature. Insulin+somatostatin+ cells (arrow) were MafA-indicating the departure of this cell type from β cells. (G) Total acinar area were not changed significantly in $Mnx1^{\Delta \text{endo}}$. (H, I) The remaining β cells in the $Mnx1^{\Delta \text{endo}}$ mutants do not express Mnx1.

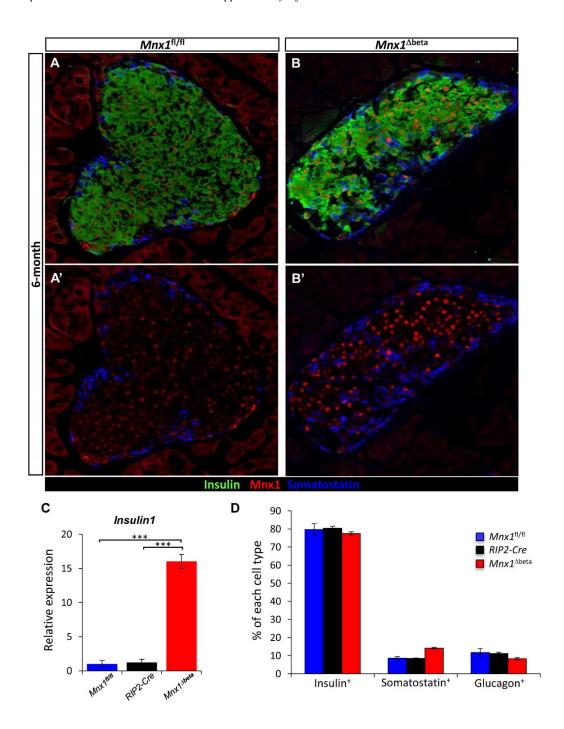



Supplementary Fig. 3 Resting blood glucose of $Mnx1^{\Delta beta}$ mutants improved with age. Measurement of resting blood glucose of $Mnx1^{fl/fl}$, RIP2-Cre and $Mnx1^{\Delta beta}$ mice at (A) P2, (B) P15, (C) 1-month old, and (D) 2 – 14-month old show a slightly elevated blood glucose at early age but blood glucose level improved with age. *p<0.05, ***p<0.005, ***p<0.001


Supplementary Fig. 4 β-to-α transdifferentiation was also observed in Mnx1^{Δbeta} mutants, albeit at lower frequency. (A, B, C) The presence of EYFP+Glucagon+ cells in $Mnx1^{\Delta beta}$ islets indicate β-to-α transdifferentiation also occurred when Mnx1 function is deleted in β cells. (D) Quantitative analysis of total area of each hormone+ cell types show that β-cell numbers were restored at 4-month old $Mnx1^{\Delta beta}$, concomitant with increased of δ and α-cell numbers; (E) Quantitative analysis show that the percentage contribution of EYFP+ cell in each of the β, δ, and α cell compartments in $RIP2^{Cre}$ and $Mnx1^{\Delta beta}$ mutants.



Supplementary Fig. 5 Initiation of β-to-δ cell transdifferentiation in $Mnx1^{\Delta beta}$ mutants was observed at P5 but not at E18.5. (A, B) Immunofluorescence analysis with EYFP, insulin and somatostatin show the absence of EYFP+somatostatin+ cells at E18.5 in $Mnx1^{\Delta beta}$ mice, indicating no β-to-δ transdifferentiation at this stage. (C, D) All EYFP+ cells are $Mnx1^-$, indicating Mnx1 is efficiently deleted in the $Mnx1^{\Delta beta}$ β cells at E18.5. (E, F) The presence of Hhex+insulin+ and Hhex+insulin+somatostatin+ (white arrows) cells in the $Mnx1^{\Delta beta}$ mutants at P5 indicate the initiation of β-to-δ transdifferentiation.



Supplementary Fig. 6 Escaper β cells in $Mnx1^{\Delta beta}$ mutants were devoided of Cre. Immunolabeling of Cre showed that majority of the escaper β cells that repopulated the islet in $Mnx1^{\Delta beta}$ do not produce Cre recombinase at (A, B, C) 4 months and, (D, E, F) 14 months, compared to the RIP2-Cre control islets. It is noteworthy that even in RIP2-Cre islets, 15-20% of insulin⁺ β cells do not produce Cre recombinase, consistent with the 85% recombination efficiency in the islet in this allele. Scale bar, 25 μ m.

Supplementary Fig. 7 Glucose clearance defects in $Mnx1^{\Delta beta}$ mutants were not caused by peripheral insulin resistance. (A) Insulin tolerance test on $Mnx1^{fl/fl}$ and $Mnx1^{\Delta beta}$ indicate that $Mnx1^{\Delta beta}$ mice do not have peripheral insulin resistance at 6-month old, but (B) developed mild insulin resistance and (C) glucose intolerance at 20-month old. ITT, Insulin tolerance test; IPGTT, intraperitoneal glucose tolerance test.

Supplementary Fig. 8 Mnx1 protein level and insulin mRNA expression were upregulated in the β cells of $Mnx1^{\Delta beta}$ mutants. (A, A', B, B') Immunolabeling of Mnx1 show that Mnx1 protein was significantly induced in $Mnx1^{\Delta beta}$ β cells at 6-month old. (C) qRT-PCR data showed that Insulin1 mRNA expression is highly upregulated in the remaining Cre- β cells at 6-month old. (D) Quantitative analysis of β , and α cell fraction showing the percentage of β cells within islets of $Mnx1^{\Delta beta}$ is comparable to control $Mnx1^{fl/fl}$ and RIP2-Cre at 14-month old.

Supplementary Table S1: List of antibodies used

Primary antibodies						
Antigen	Species	Dilution	Staining type	Source		
Mnx1	Rabbit	1:5000	IF	Samuel Pfaff (Salk Institute)		
Mnx1	Mouse	1:500	TSA	DSHB		
Ptf1a	Goat	1:1000	TSA	Chris Wright		
Sox9	Rabbit	1:1000	IF	Chemicon		
Pax6	Rabbit	1:800	TSA	Covance		
GFP	Rabbit	1:500 1:1000	IF TSA	Clontech		
Menin	Goat	1:500	IF	Bethyl		
Insulin	Guinea Pig	1:1000	IF	Linco		
Insulin-A	Goat	1:250	IF	Santa Cruz		
Glucagon	Guinea Pig	1:1000	IF	Linco		
Glucagon	Rabbit	1:1000	IF	Linco		
Somatostatin	Goat	1:1000	IF	Santa Cruz		
Pancreatic Polypeptide	Guinea Pig	1:1000	IF	Linco		
Cpal	Goat	1:250	IF	BD Bioscience		
E-cadherin	Mouse	1:500	IF	BD Bioscience		
Nkx6.1	Rabbit	1:1000	IF	BCBC		
MafA	Rabbit	1:1000	TSA	Bethyl		
GLUT2	Rat	1:200	IF	Alpha Diagnostic		
Pdx1	Rabbit	1:1000	IF	Chris Wright (Vanderbilt)		
Ki67	Rabbit	1:500	IF	Sigma		
Ngn3	Guinea Pig	1:2000	TSA	Maike Sander (UCSD)		
Hhex	Rabbit	1:300	IF	Clifford Bogue (Yale University)		
Cre	Rabbit	1:500	IF	Novagen		

Secondary antibodies					
Antigen	Conjugation	Dilution	Source		
Rabbit/Guinea pig/ Goat/Mouse/Chicken	СуЗ	1:300	Jackson ImmunoResearch		
Rabbit/Guinea pig/ Goat/Mouse/Chicken	Cy2	1:300	Jackson ImmunoResearch		
Rabbit/Guinea pig/Goat/Mouse	Cy5	1:300	Jackson ImmunoResearch		
Rabbit/Guinea pig/ Goat/Mouse/Chicken	Biotinylated	1:1000	Vector Laboratories		

Supplementary Table S2: Primers used in qRT-PCRs

Primer name	Sequence
GAPDH	Forward: AACTTTGGCATTGTGGAAGG
	Reverse: GGATGCAGGGATGATGTTCT
Insulin1	Forward: CAGCAAGCAGGTCATTGTTT
	Reverse: GGGACCACAAAGATGCTGTT
Mnx1	Forward: AAGCGTTTTGAGGTGGCTAC
	Reverse: CCATTTCATTCGGCGGTTCT
Cdkn2a	Forward: GGGATGATGGACTTTTGAGG
	Reverse: TCTGGCTTCTAAGAGAAGATCTAA
Bmi1	Forward: AAACCAGACCACTCCTGAACA
	Reverse: TCTTCTTCTTCATCTCATTTTTGA
Cdkn1a	Forward: GCTTGGATGTCAGCGGGA
	Reverse: CAGAGTTTGCCTGAGACCCA
CDK4	Forward: CGAGCGTAAGATCCCCTGCT
	Reverse: CGAGCGTAAGATCCCCTGCT
CDK6	Forward: TGCGAGTGCAGACCAGTGG
	Reverse: AGGTCTCCAGGTGCCTCAGC
CyclinD1	Forward: CCCTCGGTGTCCTACTTCAA
	Reverse: GGGGATGGTCTCCTTCATCT
Menin	Forward: ACCCACTCACCCTTTATCACA
	Reverse: ACATTTCGGTTGCGACAGT
Insulin2	Forward: GGCTTCTTCTACACACCCAT
	Reverse: CCAAGGTCTGAAGGTCACCT