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Supplementary Fig. 1 Verification of MnxI floxed allele using germ-line activated Cre line

(EITACre). (A) Schematic showing generation of MnxI global null mice by crossing Mnx1" mice to the
germ line deleter Ella®®. (B, C) Gross morphology of E18.5 gut show the absence of dorsal pancreas
(demarcated in red dotted line), whereas ventral pancreas (delineated by blue dotted line) develop normally
in the MnxI™! mice. We are not able to test for the presence of the truncated protein with the currently
available specific Mnx1 antibody using immunofluorescence, because this antibody was raised against the
C-terminal region of Mnx 1, which is absent when exon 3 is deleted. Nevertheless, the Ella“;Mnx1™/+,
Ngn3-Cre;Mnx1™* and RIP2-Cre;MnxI™* mice are normal and do not exhibit any defects in motor
neuron function, pancreatic endocrine differentiation and B-cell function, suggesting that the truncated
protein is either not made or is degraded, not exhibiting any dominant negative effects.
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Supplementary Fig. 2 The remaining B cells in MnxI4°"d° are not mature. Immunofluorescence
analysis show that the remaining B cells in the Mnx]2ed expressed (A, B) Pdx1, and (C, D) Nkx6.1 as in
control. (E, F) But MafA protein become localized to the cytoplasm compared to the nucleus localization in
control B cell, indicating that these mutant [ cells are immature. Insulintsomatostatin® cells (arrow) were MafA-
indicating the departure of this cell type from [ cells. (G) Total acinar area were not changed significantly in
Mnx12ede_ (H, I) The remaining [ cells in the MnxI2"d mutants do not express Mnx|1.
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Supplementary Fig. 3 Resting blood glucose of MnxIAP¢2 mutants improved with age.

Measurement of resting blood glucose of Mnx1"f, RIP2-Cre and Mnx12* mice at (A) P2, (B) P15, (C)
1-month old, and (D) 2 — 14-month old show a slightly elevated blood glucose at early age but blood
glucose level improved with age. *p<0.05, **p<0.005, ***p<0.001
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Supplementary Fig. 4 B-to-a transdifferentiation was also observed in Mnx14b¢t2 mutants, albeit at
lower frequency. (A, B, C) The presence of EYFP*Glucagon* cells in Mnx12*% islets indicate -to-o
transdifferentiation also occurred when Mnx1 function is deleted in 3 cells. (D) Quantitative analysis of
total area of each hormone* cell types show that B-cell numbers were restored at 4-month old Mnx]2be@,
concomitant with increased of & and a-cell numbers; (E) Quantitative analysis show that the percentage
contribution of EYFP* cell in each of the B, 3, and o cell compartments in RIP2C and Mnx]2be2
mutants.
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Supplementary Fig. 5 Initiation of B-to-8 cell transdifferentiation in Mnx12b¢2 mutants was
observed at P5 but not at E18.5. (A, B) Immunofluorescence analysis with EYFP, insulin and somatostatin
show the absence of EYFP*somatostatin* cells at E18.5 in Mnx/A%? mice, indicating no [-to-d
transdifferentiation at this stage. (C, D) All EYFP+ cells are Mnx1-, indicating Mnx/ is efficiently deleted in
the Mnx12b¢ 3 cells at E18.5. (E, F) The presence of Hhex+insulin+ and Hhex*insulin*somatostatin* (white
arrows) cells in the Mnx12*% mutants at P5 indicate the initiation of -to-d transdifferentiation.
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Supplementary Fig. 6 Escaper B cells in Mnx14¢ mutants were devoided of Cre. Immunolabeling of Cre
showed that majority of the escaper B cells that repopulated the islet in MnxI4“ do not produce Cre
recombinase at (A, B, C) 4 months and, (D, E, F) 14 months, compared to the RIP2-Cre control islets. It is
noteworthy that even in RIP2-Cre islets, 15-20% of insulin*  cells do not produce Cre recombinase,
consistent with the 85% recombination efficiency in the islet in this allele. Scale bar, 25 pm.
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Supplementary Fig. 7 Glucose clearance defects in Mnx12*2 mutants were not caused by peripheral
insulin resistance. (A) Insulin tolerance test on MnxIV and Mnx12**% indicate that MnxI2*2 mice do not
have peripheral insulin resistance at 6-month old, but (B) developed mild insulin resistance and (C) glucose
intolerance at 20-month old. ITT, Insulin tolerance test; IPGTT, intraperitoneal glucose tolerance test.
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Supplementary Fig. 8 Mnx1 protein level and insulin mRNA expression were upregulated in

the B cells of MnxI4¢ mutants. (A, A’, B, B’) Imnmunolabeling of Mnx1 show that Mnx1 protein was
significantly induced in Mnx12@ [ cells at 6-month old. (C) qRT-PCR data showed that /nsulin] mRNA
expression is highly upregulated in the remaining Cre" 3 cells at 6-month old. (D) Quantitative analysis of 3,
d, and a cell fraction showing the percentage of B cells within islets of Mnx[2*@is comparable to control
Mnx 1" and RIP2-Cre at 14-month old.
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Supplementary Table S1: List of antibodies used

Primary antibodies

Antigen Species Dilution Staining Source
type

Mnx1 Rabbit 1:5000 | IF Samuel Pfaff (Salk

Institute)
Mnx1 Mouse 1:500 TSA DSHB
Ptfla Goat 1:1000 TSA Chris Wright
Sox9 Rabbit 1:1000 IF Chemicon
Pax6 Rabbit 1:800 TSA Covance

. 1:500 IF
GFP Rabbit 11000 | TSA Clontech
Menin Goat 1:500 IF Bethyl
Insulin Guinea Pig | 1:1000 IF Linco
Insulin-A Goat 1:250 IF Santa Cruz
Glucagon Guinea Pig | 1:1000 IF Linco
Glucagon Rabbit 1:1000 IF Linco
Somatostatin Goat 1:1000 IF Santa Cruz
Pancreatic Polypeptide | Guinea Pig | 1:1000 IF Linco
Cpal Goat 1:250 IF BD Bioscience
E-cadherin Mouse 1:500 IF BD Bioscience
Nkx6.1 Rabbit 1:1000 IF BCBC
MafA Rabbit 1:1000 | TSA Bethyl
GLUT2 Rat 1:200 IF Alpha Diagnostic
. ) Chris Wright

Pdx1 Rabbit 1:1000 IF (Vanderbilt)
Ki67 Rabbit 1:500 IF Sigma
Ngn3 Guinea Pig | 1:2000 | TSA Maike Sander (UCSD)
Hhex Rabbit 1:300 | IF Clifford Bogue (Yale

University)
Cre Rabbit 1:500 IF Novagen

Secondary antibodies
Antigen Conjugation | Dilution | Source
Rabbit/Guinea pig/ . Jackson
Goat/Mouse/Chicken Cy3 1:300 ImmunoResearch
Rabbit/Guinea pig/ . Jackson
Goat/Mouse/Chicken Cy2 1:300 ImmunoResearch
. . . ) Jackson

Rabbit/Guinea pig/Goat/Mouse Cy5 1:300

ImmunoResearch
Rabbit/Guinea pig/ Biotinylated | 1:1000 Vector Laboratories

Goat/Mouse/Chicken
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Supplementary Table S2: Primers used in gRT-PCRs

Primer name Sequence
GAPDH Forward: AACTTTGGCATTGTGGAAGG
Reverse: GGATGCAGGGATGATGTTCT
Insulini Forward: CAGCAAGCAGGTCATTGTTT
Reverse: GGGACCACAAAGATGCTGTT
Mnx1 Forward: AAGCGTTTTGAGGTGGCTAC
Reverse: CCATTTCATTCGGCGGTTCT
cdkn2a Forward: GGGATGATGGACTTTTGAGG
Reverse: TCTGGCTTCTAAGAGAAGATCTAA
Bmil Forward: AAACCAGACCACTCCTGAACA
Reverse: TCTTCTTCTTCTTCATCTCATTTTTGA
cdknia Forward: GCTTGGATGTCAGCGGGA
Reverse: CAGAGTTTGCCTGAGACCCA
cDK4 Forward: CGAGCGTAAGATCCCCTGCT
Reverse: CGAGCGTAAGATCCCCTGCT
CDK6 Forward: TGCGAGTGCAGACCAGTGG
Reverse: AGGTCTCCAGGTGCCTCAGC
CyclinD1 Forward: CCCTCGGTGTCCTACTTCAA
Reverse: GGGGATGGTCTCCTTCATCT
Menin Forward: ACCCACTCACCCTTTATCACA
Reverse: ACATTTCGGTTGCGACAGT
B Forward: GGCTTCTTCTACACACCCAT
Insulin2
Reverse: CCAAGGTCTGAAGGTCACCT
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