## **Supplementary Figures**

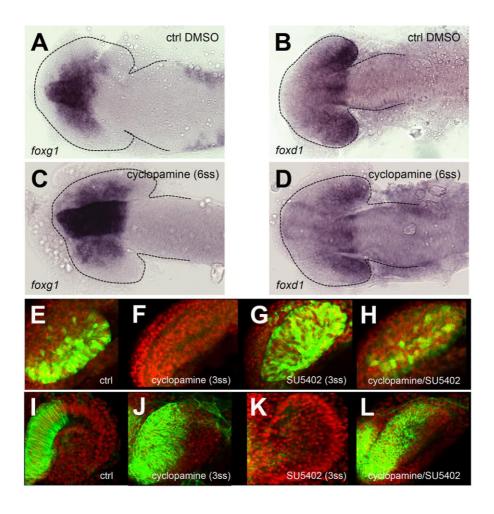



Figure S1: Hh is required for temporal specification only before 6ss.

foxg1 (A,C) and foxd1 (B,D) expression is normal in embryos treated with cyclopamine from 6ss. (E-L) Images showing effects of cyclopamine and SU5402 upon transgenes expressed in nasal  $(Tg\{CldnB::GFP\})$  and temporal  $(Tg\{HGn42a::GFP\})$  domains. (A-D) are dorsal views with anterior to the left; (E-L) are lateral views of the eye with anterior to the left.

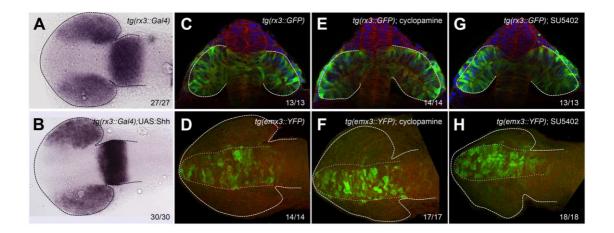



Figure S2: Primary forebrain subdivision is unaffected upon manipulation of Hh and Fgf signals in the eye field.

(A-B) dorsal views with anterior to the left showing mab21/2 expression in  $Tg\{rx3::Gal4\}$  (A) and  $Tg\{rx3::Gal4\}$ ;UAS:Shh (B) eyes and brains. (C-H) Frontal (C,E,G) and dorsal (D,F,H) views of brains and eyes following drug treatments in  $Tg\{rx3::GFP\}$  and  $Tg\{emx3::YFP\}$ . In all conditions there are no changes in primary forebrain subdivisions. All embryos are 12ss.

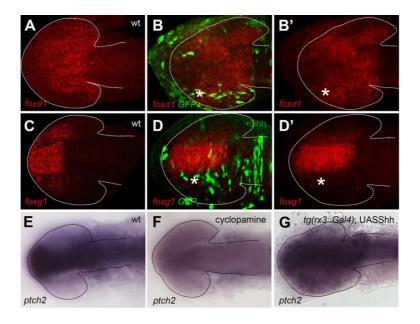
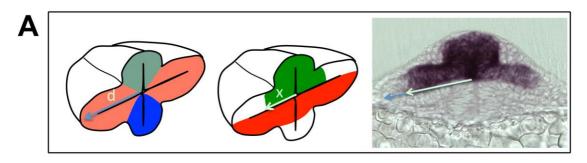




Figure S3: Mosaic overexpression of Hh activity in the optic vesicle promotes temporal fate.

(A-D') Mosaic overexpression of Shh reproduces the phenotypes observed by using the Gal4/UAS system (compare to main figure 2). (E-G) Images of brains and eyes showing expression of the Shh target *ptch2* is lost in a cyclopamine treated embryo (H) and overexpressed in a *tg(rx3::Gal4)*;UAS:shh embryo, consistent with the expected alterations to Hh pathway activity under these conditions.



| В | condition                               | mean (x/d) | n (eyes) |
|---|-----------------------------------------|------------|----------|
|   | wt                                      | 0.67       | 4        |
|   | cyclopamine                             | 0.66       | 10       |
|   | SU5402                                  | 0.08       | 8        |
|   | SU5402+cyclopamine                      | 0.27       | 8        |
|   | ace <sup>-/-</sup> ; smu <sup>-/-</sup> | 0.53       | 12       |

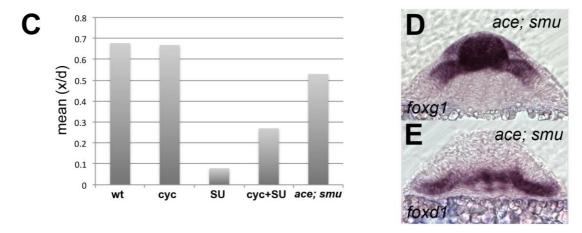



Figure S4: Quantification of extension of *foxg1* expression in all the experimental conditions presented in the study.

(A) Rationale of the quantification strategy. Dividing x by d normalises the extension of foxgl expression to the total length of the optic vesicle. (B) Table showing the mean of x/d for the number of eyes (n) quantified. (C) Graph representing the results from (B).