Supplemental Methods

Chromatin immunoprecipitation studies

E12.5 dissected WT pancreata were fixed in 1% formaldehyde at RT for 10 min and quenched with 125 mM glycine. Nuclei were lysed in RIPA buffer, flash-freezed in liquid nitrogen and kept at -80° C. Chromatin pools (n=150) were sonicated (15x 10sec ON / 1min30 OFF, Bioruptor UCD-200TM-EX) to obtain fragments of \sim 500bp, and then incubated overnight at 4° C with 4 μ g of Hnf1b or rabbit IgG antibodies (both from Santa-Cruz).

The Hnf1b antibody (H85, Santa Cruz) was raised against a non-conserved domain between the dimerization domain and the POU specific domain of HNF1b and it does not cross react with HNF1a. It was extensively validated by immunoprecipitation, immunofluorescence and western blot techniques using WT and mutant tissues. Antibody specificity was further determined by the formation of specific supershifts on gel shif binding assays using either kidney extracts or extracts from transfected cells overexpressing Hnf1b or Hnf1a proteins. Furthermore, the ability of the antibody to react with endogenous Hnf1b protein in cross-linked chromatin was analyzed by ChIP on embryonic kidneys, assaying two well-known targets genes: Ksp-Cadherin and Wnt9 (first intron) (see Heliot and Cereghini, 2012; Heliot et al, 2013; Lokmane et al, 2010).

Chromatin-antibody complexes were immunoprecipitated with Protein-A agarose (Roche). Eluted chromatin was decrosslinked at 65°C and purified by phenol/chloroform extraction. Immunoprecipitated chromatin and input (0.01% dilution) were analyzed by qPCR. These data were normalized to a reference DNA (pool of diluted inputs) and then expressed as fold enrichment relative to the values obtained with the immunoprecipitated chromatin using the non- immune IgG serum. A total of 4 targets were analyzed in duplicate per ChIP experiment, with at least 3 independent experiments performed for each of these targets.

Figure S1. No phenotypic difference between control and heterozygous pancreata. Haematoxylin/Eosin staining of control and heterozygous Pdx1-Cre; $Hnf1b^{+/Flox}$ pancreata at E16.5, showing no morphological difference in acinar, endocrine and ductal cells. Scale bars: 50 μ m.

Figure S2. Pancreatic hypoplasia and morphogenesis defects in Sox9-CreER^{T2};Hnf1b^{Flox/LacZ} (TM E9.5) embryos.

(A, B) Digestive tracts of controls and *Sox9-CreER*^{T2}; *Hnf1b*^{Flox/LacZ} (TM E9.5) mutants at E18.5 (C-F) Haematoxylin/Eosin staining of control and mutant pancreata at E16.5 and 18.5. Note the dramatic reduction in acinar cells in mutants (D, F) and cystic ducts (asterisks in F). (G) Pancreas weight of control, heterozygous (*Sox9-CreER*^{T2}; *Hnf1b*^{Flox/LacZ}) pancreata at E16.5 (TM at E9.5) (Control n=4, Heterozygous n=6, Mutant n=3), showing 40% decrease in mutants compared to controls. (H) qRT-PCR analysis of WT *Hnf1b* transcripts at E14.5 showing 70% decrease in *Hnf1b* expression in mutant pancreas (Control n=4, Mutant n=3). (I, J) Efficient *Hnf1b* inactivation in *Sox9-CreER*^{T2}; *Hnf1b*^{Flox/LacZ}; *R26R*^{+/YFP} (TM E9.5) mutant pancreas at E11.5 shown by Hnf1b (red) and GFP (green) immunostainings. Note the high number of GFP+ cells with almost no Hnf1b+ cells in the mutant pancreas. Nuclei were stained in blue with DAPI. Scale bars: 200 μm in A-B; 50 μm in C-F and I-J'.

Figure S3. Lack of endocrine precursors in Sox9-CreER^{T2};Hnf1b^{Flox/LacZ} (TM E9.5) mutants.

(A, B) Amylase (AMY, green) and NGN3 (red) immunostainings in control and *Sox9-CreER*^{T2}; *Hnf1b*^{Flox/LacZ} (TM E9.5) mutant pancreata at E16.5. Note the absence of Ngn3+ endocrine precursor cells in the mutant section (B). (C, D) Immunostainings of Insulin (INS, green) and Glucagon (GLUC, red) in control and *Sox9-CreER*^{T2}; *Hnf1b*^{Flox/LacZ} (TM E9.5) mutant pancreata at E18.5. (E) qRT-PCR analysis of *Ngn3*, *Glucagon*, *Insulin*, *Somatostatin* and *Amylase* expression in controls and mutants at E16.5 (Control n=10, Mutant n=3). Scale bars: 50 μm.

Figure S4. Cystic ducts with polarity defects in Sox9-CreER^{T2}; Hnf1b^{Flox/LacZ} (TM E9.5) mutants. (A, B) Sox9 immunohistochemistry of control and Sox9-CreER^{T2}; Hnf1b^{Flox/LacZ} (TM E9.5) mutant pancreata at E18.5. (C, D) Mucin1 (MUC1, green) and β-catenin (red) coimmunostainings in control and Sox9-CreER^{T2}; Hnf1b^{Flox/LacZ} (TM E9.5) mutant pancreata at E18.5. Note the polarity defects in epithelial cells lining the cysts, evidenced by a multilayered epithelium and a discontinuity in MUC1 expression at the apical region of ductal cells. Asterisks indicate cystic ducts in mutants (B, D). Scale bars: 50 μm.

Figure S5. Exocrine defects in Sox9-CreER^{T2}; Hnf1b^{Flox/LacZ} (TM E12.5) mutants.

(A) qRT-PCR analysis of the acinar markers *Ptf1a*, *Nr5a2*, *Mist1* and *Amylase* in control and *Sox9-CreER*^{T2}; *Hnf1b*^{Flox/LacZ} (TM E12.5) mutant pancreata (Control n=8, Mutant n=7). (B-C) Amylase (AMY, green) staining showing a moderate loss of acinar cells in mutants. (D, E) MUC1 (green) and β-catenin (red) coimmunostainings showing cystic ducts and loss of polarity. Nuclei were stained in blue with DAPI. (I) qRT-PCR analysis of Notch pathway genes in control and *Sox9-CreER*^{T2}; *Hnf1b*^{Flox/LacZ} (TM E12.5) at E16.5 (Control n=8, Mutant n=7), showing an upregulation of *Notch2*, *Hey2* and *Hey1* at the onset of acinar differentiation.

Figure S6. Regulatory sequences in *Ngn3* promoter.

-5000

Three regions upstream *Ngn3* TSS are represented: one distal (-5000 bp; -4740 bp), one intermediate (-4100 bp, -3200 bp) and one proximal (-900 bp; -170 bp). Putative binding sites for Hnf1b, Pdx1, Sox9 and FoxA2 were identified with the JASPAR database. Binding sites for Hnf6 were identified previously (Jacquemin et al., 2000). Sox9 binding sites could correspond to the ones previously described in the human promoter (-4061 bp; -3328 bp and -3306 bp; -400 bp and -385 bp; -161 bp upstream TSS) (Lynn et al., 2007). Intermediate regulatory sequences include the cluster 1 characterized in human (Lee et al., 2001). We identified 2 novel Hnf1b binding sites in the distal and the proximal regions, characterized by ChIP experiments (see Fig. 7). Hnf1b binding sites could correspond to putative ones in the human promoter identified by JASPAR database (-5043 bp, -3824 bp; -3783 bp; -445 bp).

ggtggccccaaatggtcgtcagaacccagagtctggagagggccagagttcagaccctgtgggctcctttccaggggaggt

HNF1B OX9 FOXA2 PDX1 FOXA2 $a a catggtgac \overline{cattag} aggtggccttt catctcctctgactt \underline{cccttgttt} gtttttggacagagagaat cacgaagtctgtttattttcccaac... \ -4740$ SOX9 -4100 $taa agac ctcgggtgctccagagcgtcccagcccctcttctc {\color{red}cctttgttc} gaggactccctggggccgaagctccctcgtgcgctctgtggggtg$ HNF6 cgggggcagggcccttgggggggggggcccgctcagtgccaaatccatgtgtcagcttctaggacaggtgtgcccaggggccagggccaggFOXA2 tctcccccccccccggatttatcacggcaaaggtaatattgtgctaactatgagtaaacagtcattgtgaagaccaaggagggtttatcaggcaa act agt t g t g g g g g g g g c t t a a caa t a a g t t g c t g c t gHNF1B FOXA2 SOX9 PDX1 SOX9 $tcgtctc \\ ctttgttt \\ gaagggctgttt \\ gaagtggccagtctcggtcccggcagcctc...$ -3200 HNF6 -900 SOX9 HNF1B SOX9 $at ccca a {\color{red} ggtgatattgaacct} {\color{red} ggccaagcaatagttt} ctgagtagaaaggacttgagcagggaccgtctctggtcactctgtcctctttccc$ aggatggagtcagtctgtgaaacatggttgcacacacatttcctgacccaacccatagtggcggagagctggatagcactttgaactaatgg ${\tt gcgctcctcccagctgccagccaagaagacacttgactccttgatcgctggttcatttagacaagccgtttccctctctgagccaaaagaccc}$ SOX9

Table S1 : Primary and Secondary antibodies

Primary antibodies						
Antigen	Host	Dilution	Source			
Hnf1b	rabbit	1/50	Santa Cruz			
GFP	chicken	1/500	Aves Labs			
P-Histone H3	mouse	1/300	Millipore			
Pdx1	rabbit	1/1200	C. Wright, Vanderbilt University, USA			
E-cadherin	mouse	1/100	BD Transd. Lab.			
Ngn3	guinea pig	1/1000	M. Sander, University of California-San Diego, USA			
CPA1	rabbit	1/500	Biogenesis			
Insulin	rabbit	1/1000	ImmunoStar			
Glucagon	mouse	1/1000	Sigma			
Amylase	rabbit	1/300	Sigma			
Sox9	rabbit	1/300	Chemicon			
MUC1	Armenian hamster	1/100	Neomarkers			
beta-Catenin	mouse	1/100	BD Transd. Lab.			
acetylated alpha-Tubulin	mouse	1/300	Sigma			
Hnf6	guinea pig	1/5000	P. Jacquemin & F. lemaigre, De Duve Institute, Belgium			
pan-Cytokeratin	mouse	1/100	Sigma			
Ezrin	rabbit	1/300	S. Louvet, UMR7622 CNRS UPMC, France			
Dystroglycan	rabbit	1/200	Novus Biologicals			
Laminin	rabbit	1/50	Sigma			
AQP1	rabbit	1/100	Interchim			
PKCz	rabbit	1/500	Sigma			

Secondary antibodies					
Conjugation	Species	Dilution	Source		
Cy3	rabbit	1/500	Jackson		
Alexa Fluor 488	rabbit	1/500	Invitrogen		
Alexa Fluor 488	mouse	1/500	Invitrogen		
Alexa Fluor 488	chicken	1/500	Jackson		
FITC	Armenian hamster	1/500	Jackson		
Biotin	rabbit	1/1000	Vector		
Streptavidin-Alexa 594	-	1/500	Jackson		

Table S2. Oligonucleotide sequences for qRT-PCR and ChIP experiments. qRT-PCR gene expression

AAGCCGACTCCCCACATTCCTC Box9 AAGCCGACTCCCCCACATTCCTC CGCCCCTCTCGCTTCAGATC AAGCCGACTCCCCCACATTCCTC CGCCCCTCTCGCTTCAGATC Byf1a TTCCTGAAGCACCTTTGACAGA ACGGAGTTTCCTGGACAGA ACGGAGTTTCCTGGACAGAG ACGGAGTTTCCTGGACAGAG Byp1 CCCTCCCGGTGAAAGTGACTGA CTGCTGGACGACCTGAA CGCACAGCCATGTGGCTATA CTGTGGACTCCCAA CGCCCAGCTGACCTGAAC CTGCCTGCTGGACTTCCCAA CGCCCAGCCATGTGGCTATA CTGTCACATGTCACCAA CGTCACATGTCAGGTTTCTC Ck19 ACCCTCCCGAGATTACACC CTGCACATGTCAGGTTTCC Ck19 ACCCTCCCGAGATTACAACC TCTGAAGTCATCTGCAGCA ACCTGTACCCTGAGACCC ACCTGTAGCCCAAAGCC ACCTGTAGCCCAAAGCC ACCTGTAGCCCAAAGCC ACCTGTAGCCCAAAGCC ACCTGTAGCCCAAAGCC ACCTGTAGCCCAAACCC ACCTGAGAGACCCCC ACCAGAGAGACCCC ACCAGAGAGACCCC ACCAGAGAGACCCCC ACCAGAGAGACCCC ACCAGAGAGACCCC ACCAGAGAGACCCC ACCAGAGAGACCCCCCCC	Reverse Sequence (5'→3')	
Sox9AAGCCGACTCCCCACATTCCTCCGCCCCTCTCGCTTCAGATCHnf6CAAATCACCATCTCCCAGCAGCAGACTCCTCCTCTGGCATTPtf1aTTCCTGAAGCACCTTTGACAGAACGGAGTTTCCTGGACAGAGPdx1CCAGATCTGCCTCTAGGACTCTTTCAGTTTGGAGCCCAGGTTGTMuc1CTCTGGAAGACCCCAGCTCCAACCACGGAGCCTGACCTGAACSpp1CCCTCCCGGTGAAAGTGACTGAGCACCAGCCATGTGGCTATAMistlTGGGCCTCCAGATCTCACCAACGTCACATGTCAGGTTTCTCTNr5a2CTGCTGGACTACACG GTTTGCCTGCCTGCTTGCTGATTGCCk19ACCCTCCCGAGATTACAACCTCTGAAGTCATCTGCAGCAPkhd1TGCTCCTCAGGCAGGCAATCGACCTGTACCCTGGGGTGGCTKif12ACGAGGCTTCTATGTGGAACAGGAGGTACCTGCTGAGAGAGTCys1AGAGGAGCTCATGGCGAGCATTGCCTGTGGCACAGATGCCAABicc1ACTCGGTGGAAGGCTGCAATGAAGTCGCCAGAGTTCCAGABicc1ACTCGGTGGAAGGCTGCAATGAAGTCGCCAGCGTTTCCAGAAPkd1GCTGCATGCCAGTTCTTTTGTTTTAAAGTGCAGAAGCCCCPkd2CATGTCTCGATGTCCAAAGAATGGAGAACATTATGGTGAANgn3TTCGCCCACAACTACATCTGTTGGGAGACCTGGGGAGTAGAGlucagonCCAAGAGGAACCGGAACACCCTTCAGCATGCCTCTCAAATInsulinATCCACAATGCCACGCTTCTAAACCCACCCAGGCTTTTGTSomatostatinTCCGTCAGTTTCTGCAGAAGTCTCGTACTTGGCCAGTTCCTGTTTAmylaseCTGGGTTGATATTGCCAAGGTGCACCTTGACCATGCTNotch1AACACCGCCCTGGATTCATACATGTGGCACCCTCGAAGCNotch2CCTGCCAGGTTTTGAAGGGAGGGCAGTCGTCGATATTCCGDill1GCCCTCCATACAGCTCTCCCAGGCGCTGATGATTTCCJag1TGCCCTCCAGGACATTGTGGAAGATTGGAGGCCGCTC	TTGCTGGTCTTGCCATTCCT	
Hnf6 CAAATCACCATCTCCCAGCAG CAGACTCCTCCTCTGGCATT Ptf1a TTCCTGAAGCACCTTTGACAGA ACGGAGTTTCCTGGACAGAG Pdx1 CCAGATCTGCCTCTAGGACTCTTT CAGTTTGGAGCCCAGGTTGT Muc1 CTCTGGAAGACCCCAGCTCCAA CCACGGAGCCTGACCTGAC Spp1 CCCTCCCGGTGAAAGTGACTGA GCACCAGCCATGTGGCTATA Mist1 TGGGCCTCCAGATCTCACCAA CGTCACATGTCAGGTTTCTCT Nr5a2 CTGCTGGACTACACG GTTTGC CTGCCTGCTTGCTGATTGC Ck19 ACCCTCCCGAGATTACAACC TCTGAAGTCATCTGCAGCCA Pkhd1 TGCTCCTCAGGCAGGCAATCG ACCTGTACCCTGGGGTGGCT Kif12 ACGAGGCTTCATGTGGAACAG GAGGTACCTGCTGAGAAGTT Cys1 AGAGGAGCTCATGGCGAGCATT GCCTGTGGCACAGAGCCAA Bicc1 ACTCGGTGGAAGGCTGCAATGA AGTCGCCAGCGTTTCCAGAA Pkd1 GCTGCATGCCAGTTCTTTTG TTTTAAAGTGCAGAAGCCCC Pkd2 CATGTCTCGATGTCCAAAGA ATGGAGAACATTATGGTGAA Ngn3 TTCGCCCACAACTACATCTG TTGGGAGACTGGGGAGTAGA Insulin ATCCACAATGCACGCTTCT AAACCCACCCAGGCTTTTG Somatostatin TCCGTCAGTTTCTGCAGAAGTCTC GTACTTGGCCAGTTCCTGTTT	GGGAGACCCCTCGTTGCAAA	
Ptf1a TTCCTGAAGCACCTTTGACAGA ACGGAGTTTCCTGGACAGAG Pdx1 CCAGATCTGCCTCTAGGACTCTT CAGTTTGGAGCCCAGGTTGT Muc1 CTCTGGAAGACCCCAGCTCCAA CCACGGAGCCTGACCTGACC Spp1 CCCTCCCGGTGAAAGTGACTGA GCACCAGCCATGTGGCTATA Mist1 TGGGCCTCCAGATCTCACCAA CGTCACATGTCAGGTTTCTCT Nr5a2 CTGCTGGACTACACG GTTTGC CTGCCTGCTGCTGATTGC Ck19 ACCCTCCCGAGATTACAACC TCTGAAGTCATCTGCAGCCA Pkhd1 TGCTCCTCAGGCAGGCAATCG ACCTGTACCCTGGGGTGGCT Kif12 ACGAGGCTTCTATGTGGAACAG GAGGTACCTGCTGAGAAGTT Cys1 AGAGGAGCTCATGGCGAGCATT GCCTGTGGCACAGATGCCAA Glis3 TGGGAAGCCTCAGTTCCAGGTC GCACTGAGGCCCAAAGCCAA Bicc1 ACTCGGTGGAAGGCTGCAATGA AGTCGCCAGCGTTTCCAGAA Pkd1 GCTGCATGCCAGTTCTTTTG TTTTAAAGTGCAGAAGCCCCAAACAACAACAACAACAACAACAACAACA	A	
Pdx1CCAGATCTGCCTCTAGGACTCTTTCAGTTTGGAGCCCAGGTTGTMuc1CTCTGGAAGACCCCAGCTCCAACCACGGAGCCTGACCTGACCSpp1CCCTCCCGGTGAAAGTGACTGAGCACCAGCCATGTGGCTATAMist1TGGGCCTCCAGATCTCACCAACGTCACATGTCAGGTTTCTCNr5a2CTGCTGGACTACACG GTTTGCCTGCCTGCTTGCTGATTGCCk19ACCCTCCCGAGATTACAACCTCTGAAGTCATCTGCAGCCAPkhd1TGCTCCTCAGGCAGCAATCGACCTGTACCCTGGGGTGGCTKij12ACGAGGCTTCTATGTGGAACAGGAGGTACCTGCTGAGAAGTTCys1AGAGGAGCTCATGGCGAGCATTGCCTGTGGCACAGATGCCAAGlis3TGGGAAGCCTCAGTTCCAGGTCGCACTGAGGCCCAAAGCCAABicc1ACTCGGTGGAAGGCTGCAATGAAGTCGCCAGCGTTTCCAGAAPkd1GCTGCATGCCAGTTCTTTTGTTTTAAAGTGCAGAAGCCCCPkd2CATGTCTCGATGTGCCAAAGAATGGAGAACATTATGGTGAANgn3TTCGCCCACAACTACATCTGTTGGGAGACCTGGGGAGTAGAGlucagonCCAAGAGGAACCGGAACAACCCTTCAGCATGCCTCTCAAATInsulinATCCACAATGCCACGCTTCTAAACCCACCCAGGCTTTTGTSomatostatinTCCGTCAGTTTCTGCAGAAGTCTCGTACTTGGCCAGTTCCTGTT1AmylaseCTGGGTTGATATTGCCAAGGTGCACCTTGCACCATGCTNotch1AACACCGCCCGTGGATTCATACATGTGGCACCCTCGAAGCNotch2CCTGCCAGGTTTTGAAGGGAGGGCAGTCGTCGATATTCCGDll1GCCCTCCATACAGACTCTCCCAGGCGCTGATGAGTCTTTCJag1TGCCCTCCAGGACATAGTGGACTCTCCCCATGGTGATGCARbpjGTTTTGGCGAGAGTTTTTGTGGAAGATTGGAGCCGCTCACCAAACT		
Muc1 CTCTGGAAGACCCCAGCTCCAA CCACGGAGCCTGACCTGAAC Spp1 CCCTCCCGGTGAAAGTGACTGA GCACCAGCCATGTGGCTATA Mist1 TGGGCCTCCAGATCTCACCAA CGTCACATGTCAGGTTTCTCT Nr5a2 CTGCTGGACTACACG GTTTGC CTGCCTGCTGCTGATTGC Ck19 ACCCTCCCGAGATTACAACC TCTGAAGTCATCTGCAGCA Pkhd1 TGCTCCTCAGGCAGGCAATCG ACCTGTACCCTGGGGTGGCT Kif12 ACGAGGCTTCTATGTGGAACAG GAGGTACCTGCTGAGAAGTT Cys1 AGAGGAGCTCATGGCGAGCATT GCCTGTGGCACAGATGCCAA Glis3 TGGGAAGCCTCAGTTCCAGGTC GCACTGAGGCCCAAAGCCAA Bicc1 ACTCGGTGGAAGGCTGCAATGA AGTCGCCAGCGTTTCCAGAA Pkd1 GCTGCATGCCAGTTCTTTTG TTTTAAAGTGCAGAAGCCCC Pkd2 CATGTCTCGATGTGCCAAAGA ATGGAGAACATTATGGTGAA Ngn3 TTCGCCCACAACTACATCTG TTGGGAGACTGGGGAGTAGA Insulin ATCCACAATGCCACGCTTCT AAACCCACCAGGCTTTTGT Somatostatin TCCGTCAGTTTCTGCAGAAGTCTC GTACTTGGCCACTTCTTAAT Notch1 AACACCGCCCGTGGATTCAT ACATGTGGCACCCTCGAAGC Notch2 CCTGCCAGGTTTTGAAGGGA GGGCAGTCGTCGATATTCCG	Γ	
Spp1 CCCTCCCGGTGAAAGTGACTGA GCACCAGCCATGTGGCTATA Mist1 TGGGCCTCCAGATCTCACCAA CGTCACATGTCAGGTTTCTCT Nr5a2 CTGCTGGACTACACG GTTTGC CTGCCTGCTTGCTGATTGC Ck19 ACCCTCCCGAGATTACAACC TCTGAAGTCATCTGCAGCCA Pkhd1 TGCTCCTCAGGCAGGCAATCG ACCTGTACCCTGGGGTGGCT Kif12 ACGAGGCTTCTATGTGGAACAG GAGGTACCTGCTGAGAAGTT Cys1 AGAGGAGCTCATGGCGAGCATT GCCTGTGGCACAGATGCCAA Glis3 TGGGAAGCCTCAGTTCCAGGTC GCACTGAGGCCCAAAGCCAA Bicc1 ACTCGGTGGAAGGCTGCAATGA AGTCGCCAGCGTTTCCAGAA Pkd1 GCTGCATGCCAGTTCTTTTG TTTTAAAGTGCAGAAGCCCC Pkd2 CATGTCTCGATGTGCCAAAGA ATGGAGAACATTATGGTGAA Ngn3 TTCGCCCACAACTACATCTG TTGGGAGACTGGGGAGTAGA Glucagon CCAAGAGGAACCGGAACAAC CCTTCAGCATGCCTCTCAAAT Insulin ATCCACAATGCCACGCTTCT AAACCCACCCAGGCTTTTGT Somatostatin TCCGTCAGTTTCTGCAGAAGTCTC GTACTTGGCCACGTTCT Amylase CTGGGTTGATATTGCCAAGG TGCACCTTGTCACCATGTCT Notch2 CCTGCCAGGTTTTGAAGGGA GGGCAGTCGTCGATATTCCG		
Mist1 TGGGCCTCCAGATCTCACCAA CGTCACATGTCAGGTTTCTCT Nr5a2 CTGCTGGACTACACG GTTTGC CTGCCTGCTTGCTGATTGC Ck19 ACCCTCCCGAGATTACAACC TCTGAAGTCATCTGCAGCCA Pkhd1 TGCTCCTCAGGCAGGCAATCG ACCTGTACCCTGGGGTGGCT Kif12 ACGAGGCTTCTATGTGGAACAG GAGGTACCTGCTGAGAAGTT Cys1 AGAGGAGCTCATGGCGAGCATT GCCTGTGGCACAGATGCCAA Glis3 TGGGAAGCCTCAGTTCCAGGTC GCACTGAGGCCCAAAGCCAA Bicc1 ACTCGGTGGAAGGCTGCAATGA AGTCGCCAGCGTTTCCAGAA Pkd1 GCTGCATGCCAGTTCTTTTG TTTTAAAGTGCAGAAGCCCC Pkd2 CATGTCTCGATGTGCCAAAGA ATGGAGAACATTATGGTGAA Ngn3 TTCGCCCACAACTACATCTG TTGGGAGACTGGGGAGTAGA Glucagon CCAAGAGGAACCGGAACAAC CCTTCAGCATGCCTCTCAAA Insulin ATCCACAATGCCACGCTTCT AAACCCACCCAGGCTTTTGT Somatostatin TCCGTCAGTTTCTGCAGAAGTCTC GTACTTGGCCAGTTCCTGTTT Amylase CTGGGTTGATATTGCCAAGG TGCACCTTGTCACCATGTCT Notch2 CCTGCCAGGTTTTGAAGGGA GGGCAGTCGTCGATATTCCG Dll1 GCCCTCCATACAGACTCTCCC AGGCGCTGATGAGTCTTTC	Γ	
Nr5a2 CTGCTGGACTACACG GTTTGC CTGCCTGCTTGCTGATTGC Ck19 ACCCTCCCGAGATTACAACC TCTGAAGTCATCTGCAGCCA Pkhd1 TGCTCCTCAGGCAGGCAATCG ACCTGTACCCTGGGGTGGCT Kif12 ACGAGGCTTCTATGTGGAACAG GAGGTACCTGCTGAGAAGTT Cys1 AGAGGAGCTCATGGCGAGCATT GCCTGTGGCACAGATGCCAA Glis3 TGGGAAGCCTCAGTTCCAGGTC GCACTGAGGCCCAAAGCCAA Bicc1 ACTCGGTGGAAGGCTGCAATGA AGTCGCCAGCGTTTCCAGAA Pkd1 GCTGCATGCCAGTTCTTTTG TTTTAAAGTGCAGAAGCCCC Pkd2 CATGTCTCGATGTGCCAAAGA ATGGAGAACATTATGGTGAA Ngn3 TTCGCCCACAACTACATCTG TTGGGAGACTGGGGAGTAGA Glucagon CCAAGAGGAACCGGAACAAC CCTTCAGCATGCCTCTCAAAC Insulin ATCCACAATGCCACGCTTCT AAACCCACCCAGGCTTTTGT Amylase CTGGGTTGATATTGCCAAGG TGCACCTTGTCACCATGTCT Notch1 AACACCGCCCGTGGATTCAT ACATGTGGCACCCTCGAAGC Notch2 CCTGCCAGGTTTTGAAGGGA GGGCAGTCGTCGATATTCCG Dll1 GCCCTCCATACAGACTCTCCC AGGCGCTGATGAGTCTTTC Jag1 TGCCCTCCAGGACATAGTGG ACTCTCCCCATGGTGATGCA Rbp	GCACCAGCCATGTGGCTATAGG	
Ck19 ACCCTCCCGAGATTACAACC TCTGAAGTCATCTGCAGCCA Pkhd1 TGCTCCTCAGGCAGGCAATCG ACCTGTACCCTGGGGTGGCT Kif12 ACGAGGCTTCTATGTGGAACAG GAGGTACCTGCTGAGAAGTT Cys1 AGAGGAGCTCATGGCGAGCATT GCCTGTGGCACAGATGCCAA Glis3 TGGGAAGCCTCAGTTCCAGGTC GCACTGAGGCCCAAAGCCAA Bicc1 ACTCGGTGGAAGGCTGCAATGA AGTCGCCAGCGTTTCCAGAA Pkd1 GCTGCATGCCAGTTCTTTTG TTTTAAAGTGCAGAAGCCCC Pkd2 CATGTCTCGATGTGCCAAAGA ATGGAGAACATTATGGTGAA Ngn3 TTCGCCCACAACTACATCTG TTGGGAGACTGGGGAGTAGA Glucagon CCAAGAGGAACCGGAACAAC CCTTCAGCATGCCTCTCAAA Insulin ATCCACAATGCCACGCTTCT AAACCCACCCAGGCTTTTGT Somatostatin TCCGTCAGTTTCTGCAGAAGTCTC GTACTTGGCCAGTTCCTGTTT Amylase CTGGGTTGATATTGCCAAGG TGCACCTTGTCACCATGTCT Notch1 AACACCGCCCGTGGATTCAT ACATGTGGCACCCTCGAAGC Notch2 CCTGCCAGGTTTTGAAGGGA GGGCAGTCGTCGATATTCCG Dll1 GCCCTCCATACAGACTCTCCC AGGCGCTGATGAGTCTTTC Jag1 TGCCCTCCAGGACATAGTGG ACTCTCCCCATGGTGATGCA	GCT	
Pkhd1TGCTCCTCAGGCAGGCAATCGACCTGTACCCTGGGGTGGCTKif12ACGAGGCTTCTATGTGGAACAGGAGGTACCTGCTGAGAAGTTCys1AGAGGAGCTCATGGCGAGCATTGCCTGTGGCACAGATGCCAAGlis3TGGGAAGCCTCAGTTCCAGGTCGCACTGAGGCCCAAAGCCAABicc1ACTCGGTGGAAGGCTGCAATGAAGTCGCCAGCGTTTCCAGAAPkd1GCTGCATGCCAGTTCTTTTGTTTTAAAGTGCAGAAGCCCCPkd2CATGTCTCGATGTGCCAAAGAATGGAGAACATTATGGTGAANgn3TTCGCCCACAACTACATCTGTTGGGAGACTGGGGAGTAGAGlucagonCCAAGAGGAACCGGAACAACCCTTCAGCATGCCTCTCAAATInsulinATCCACAATGCCACGCTTCTAAACCCACCCAGGCTTTTGTSomatostatinTCCGTCAGTTTCTGCAGAAGTCTCGTACTTGGCCAGTTCCTGTTTAmylaseCTGGGTTGATATTGCCAAGGTGCACCTTGTCACCATGTCTNotch1AACACCGCCCGTGGATTCATACATGTGGCACCCTCGAAGCNotch2CCTGCCAGGTTTTGAAGGGAGGGCAGTCGTCGATATTCCGDll1GCCCTCCATACAGACTCTCCCAGGCGGCTGATGAGTCTTTCJag1TGCCCTCCAGGACATAGTGGACTCTCCCCATGGTGATGCARbpjGTTTTGGCGAGAGTTTGTGGAAGATTGGAGGCCGCTCACCAAACT		
Kif12ACGAGGCTTCTATGTGGAACAGGAGGTACCTGCTGAGAAGTTCys1AGAGGAGCTCATGGCGAGCATTGCCTGTGGCACAGATGCCAAGlis3TGGGAAGCCTCAGTTCCAGGTCGCACTGAGGCCCAAAGCCAABicc1ACTCGGTGGAAGGCTGCAATGAAGTCGCCAGCGTTTCCAGAAPkd1GCTGCATGCCAGTTCTTTTGTTTTAAAGTGCAGAAGCCCCPkd2CATGTCTCGATGTGCCAAAGAATGGAGAACATTATGGTGAANgn3TTCGCCCACAACTACATCTGTTGGGAGACTGGGGAGTAGAGlucagonCCAAGAGGAACCGGAACAACCCTTCAGCATGCCTCTCAAATInsulinATCCACAATGCCACGCTTCTAAACCCACCCAGGCTTTTGTSomatostatinTCCGTCAGTTTCTGCAGAAGTCTCGTACTTGGCCAGTTCCTGTTTAmylaseCTGGGTTGATATTGCCAAGGTGCACCTTGTCACCATGTCTNotch1AACACCGCCCGTGGATTCATACATGTGGCACCCTCGAAGCNotch2CCTGCCAGGTTTTGAAGGGAGGGCAGTCGTCGATATTCCGDll1GCCCTCCATACAGACTCTCCCAGGCGGCTGATGAGTCTTTCJag1TGCCCTCCAGGACATAGTGGACTCTCCCCATGGTGATGCARbpjGTTTTGGCGAGAGTTTGTGGAAGATTGGAGGCCGCTCACCAAACT		
Cys1AGAGGAGCTCATGGCGAGCATTGCCTGTGGCACAGATGCCAAGlis3TGGGAAGCCTCAGTTCCAGGTCGCACTGAGGCCCAAAGCCAABicc1ACTCGGTGGAAGGCTGCAATGAAGTCGCCAGCGTTTCCAGAAPkd1GCTGCATGCCAGTTCTTTTGTTTTAAAGTGCAGAAGCCCCPkd2CATGTCTCGATGTGCCAAAGAATGGAGAACATTATGGTGAANgn3TTCGCCCACAACTACATCTGTTGGGAGACTGGGGAGTAGAGlucagonCCAAGAGGAACCGGAACAACCCTTCAGCATGCCTCTCAAATInsulinATCCACAATGCCACGCTTCTAAACCCACCCAGGCTTTTGTSomatostatinTCCGTCAGTTTCTGCAGAAGTCTCGTACTTGGCCAGTTCCTGTTTAmylaseCTGGGTTGATATTGCCAAGGTGCACCTTGTCACCATGTCTNotch1AACACCGCCCGTGGATTCATACATGTGGCACCCTCGAAGCNotch2CCTGCCAGGTTTTGAAGGGAGGGCAGTCGTCGATATTCCGDll1GCCCTCCATACAGACTCTCCCAGGCGGCTGATGAGTCTTTCJag1TGCCCTCCAGGACATAGTGGACTCTCCCCATGGTGATGCARbpjGTTTTGGCGAGAGTTTGTGGAAGATTGGAGGCCGCTCACCAAACT	7	
Glis3TGGGAAGCCTCAGTTCCAGGTCGCACTGAGGCCCAAAGCCAABicc1ACTCGGTGGAAGGCTGCAATGAAGTCGCCAGCGTTTCCAGAAPkd1GCTGCATGCCAGTTCTTTTGTTTTAAAGTGCAGAAGCCCCPkd2CATGTCTCGATGTGCCAAAGAATGGAGAACATTATGGTGAANgn3TTCGCCCACAACTACATCTGTTGGGAGACTGGGGAGTAGAGlucagonCCAAGAGGAACCGGAACAACCCTTCAGCATGCCTCTCAAACInsulinATCCACAATGCCACGCTTCTAAACCCACCCAGGCTTTTGTSomatostatinTCCGTCAGTTTCTGCAGAAGTCTCGTACTTGGCCAGTTCCTGTTTAmylaseCTGGGTTGATATTGCCAAGGTGCACCTTGTCACCATGTCTNotch1AACACCGCCCGTGGATTCATACATGTGGCACCCTCGAAGCNotch2CCTGCCAGGTTTTGAAGGGAGGGCAGTCGTCGATATTCCGDll1GCCCTCCATACAGACTCTCCCAGGCGGCTGATGAGTCTTTCJag1TGCCCTCCAGGACATAGTGGACTCTCCCCATGGTGATGCARbpjGTTTTGGCGAGAGTTTGTGGAAGATTGGAGGCCGCTCACCAAACT	GG	
Bicc1ACTCGGTGGAAGGCTGCAATGAAGTCGCCAGCGTTTCCAGAAPkd1GCTGCATGCCAGTTCTTTTGTTTTAAAGTGCAGAAGCCCCPkd2CATGTCTCGATGTGCCAAAGAATGGAGAACATTATGGTGAANgn3TTCGCCCACAACTACATCTGTTGGGAGACTGGGGAGTAGAGlucagonCCAAGAGGAACCGGAACAACCCTTCAGCATGCCTCTCAAATInsulinATCCACAATGCCACGCTTCTAAACCCACCCAGGCTTTTGTSomatostatinTCCGTCAGTTTCTGCAGAAGTCTCGTACTTGGCCAGTTCCTGTTTAmylaseCTGGGTTGATATTGCCAAGGTGCACCTTGTCACCATGTCTNotch1AACACCGCCCGTGGATTCATACATGTGGCACCCTCGAAGCNotch2CCTGCCAGGTTTTGAAGGGAGGGCAGTCGTCGATATTCCGDll1GCCCTCCATACAGACTCTCCCAGGCGGCTGATGAGTCTTTCJag1TGCCCTCCAGGACATAGTGGACTCTCCCCATGGTGATGCARbpjGTTTTGGCGAGAGTTTGTGGAAGATTGGAGGCCGCTCACCAAACT	ЗA	
Pkd1GCTGCATGCCAGTTCTTTTGTTTTAAAGTGCAGAAGCCCCPkd2CATGTCTCGATGTGCCAAAGAATGGAGAACATTATGGTGAANgn3TTCGCCCACAACTACATCTGTTGGGAGACTGGGGAGTAGAGlucagonCCAAGAGGAACCGGAACAACCCTTCAGCATGCCTCTCAAATInsulinATCCACAATGCCACGCTTCTAAACCCACCCAGGCTTTTGTSomatostatinTCCGTCAGTTTCTGCAGAAGTCTCGTACTTGGCCAGTTCCTGTTTAmylaseCTGGGTTGATATTGCCAAGGTGCACCTTGTCACCATGTCTNotch1AACACCGCCCGTGGATTCATACATGTGGCACCCTCGAAGCNotch2CCTGCCAGGTTTTGAAGGGAGGGCAGTCGTCGATATTCCGDll1GCCCTCCATACAGACTCTCCCAGGCGGCTGATGAGTCTTTCJag1TGCCCTCCAGGACATAGTGGACTCTCCCCATGGTGATGCARbpjGTTTTGGCGAGAGTTTGTGGAAGATTGGAGGCCGCTCACCAAACT		
Pkd2CATGTCTCGATGTGCCAAAGAATGGAGAACATTATGGTGAANgn3TTCGCCCACAACTACATCTGTTGGGAGACTGGGGAGTAGAGlucagonCCAAGAGGAACCGGAACAACCCTTCAGCATGCCTCTCAAATInsulinATCCACAATGCCACGCTTCTAAACCCACCCAGGCTTTTGTSomatostatinTCCGTCAGTTTCTGCAGAAGTCTCGTACTTGGCCAGTTCCTGTTTAmylaseCTGGGTTGATATTGCCAAGGTGCACCTTGTCACCATGTCTNotch1AACACCGCCCGTGGATTCATACATGTGGCACCCTCGAAGCNotch2CCTGCCAGGTTTTGAAGGGAGGGCAGTCGTCGATATTCCGDll1GCCCTCCATACAGACTCTCCCAGGCGGCTGATGAGTCTTTCJag1TGCCCTCCAGGACATAGTGGACTCTCCCCATGGTGATGCARbpjGTTTTGGCGAGAGTTTGTGGAAGATTGGAGGCCGCTCACCAAACT	ſĠ	
Ngn3TTCGCCCACAACTACATCTGTTGGGAGACTGGGGAGTAGAGlucagonCCAAGAGGAACCGGAACAACCCTTCAGCATGCCTCTCAAATInsulinATCCACAATGCCACGCTTCTAAACCCACCCAGGCTTTTGTSomatostatinTCCGTCAGTTTCTGCAGAAGTCTCGTACTTGGCCAGTTCCTGTTTAmylaseCTGGGTTGATATTGCCAAGGTGCACCTTGTCACCATGTCTNotch1AACACCGCCCGTGGATTCATACATGTGGCACCCTCGAAGCNotch2CCTGCCAGGTTTTGAAGGGAGGGCAGTCGTCGATATTCCGDll1GCCCTCCATACAGACTCTCCCAGGCGGCTGATGAGTCTTTCJag1TGCCCTCCAGGACATAGTGGACTCTCCCCATGGTGATGCARbpjGTTTTGGCGAGAGTTTGTGGAAGATTGGAGGCCGCTCACCAAACT	1	
GlucagonCCAAGAGGAACCGGAACAACCCTTCAGCATGCCTCTCAAATInsulinATCCACAATGCCACGCTTCTAAACCCACCCAGGCTTTTGTSomatostatinTCCGTCAGTTTCTGCAGAAGTCTCGTACTTGGCCAGTTCCTGTTTAmylaseCTGGGTTGATATTGCCAAGGTGCACCTTGTCACCATGTCTNotch1AACACCGCCCGTGGATTCATACATGTGGCACCCTCGAAGCNotch2CCTGCCAGGTTTTGAAGGGAGGGCAGTCGTCGATATTCCGDll1GCCCTCCATACAGACTCTCCCAGGCGGCTGATGAGTCTTTCJag1TGCCCTCCAGGACATAGTGGACTCTCCCCATGGTGATGCARbpjGTTTTGGCGAGAGTTTGTGGAAGATTGGAGGCCGCTCACCAAACT	GCC	
InsulinATCCACAATGCCACGCTTCTAAACCCACCCAGGCTTTTGTSomatostatinTCCGTCAGTTTCTGCAGAAGTCTCGTACTTGGCCAGTTCCTGTTTAmylaseCTGGGTTGATATTGCCAAGGTGCACCTTGTCACCATGTCTNotch1AACACCGCCCGTGGATTCATACATGTGGCACCCTCGAAGCNotch2CCTGCCAGGTTTTGAAGGGAGGGCAGTCGTCGATATTCCGDll1GCCCTCCATACAGACTCTCCCAGGCGGCTGATGAGTCTTTCJag1TGCCCTCCAGGACATAGTGGACTCTCCCCATGGTGATGCARbpjGTTTTGGCGAGAGTTTGTGGAAGATTGGAGGCCGCTCACCAAACT		
SomatostatinTCCGTCAGTTTCTGCAGAAGTCTCGTACTTGGCCAGTTCCTGTTTAmylaseCTGGGTTGATATTGCCAAGGTGCACCTTGTCACCATGTCTNotch1AACACCGCCCGTGGATTCATACATGTGGCACCCTCGAAGCNotch2CCTGCCAGGTTTTGAAGGGAGGGCAGTCGTCGATATTCCGDll1GCCCTCCATACAGACTCTCCCAGGCGGCTGATGAGTCTTTCJag1TGCCCTCCAGGACATAGTGGACTCTCCCCATGGTGATGCARbpjGTTTTGGCGAGAGTTTGTGGAAGATTGGAGGCCGCTCACCAAACT		
AmylaseCTGGGTTGATATTGCCAAGGTGCACCTTGTCACCATGTCTNotch1AACACCGCCCGTGGATTCATACATGTGGCACCCTCGAAGCNotch2CCTGCCAGGTTTTGAAGGGAGGGCAGTCGTCGATATTCCGDll1GCCCTCCATACAGACTCTCCCAGGCGGCTGATGAGTCTTTCJag1TGCCCTCCAGGACATAGTGGACTCTCCCCATGGTGATGCARbpjGTTTTGGCGAGAGTTTGTGGAAGATTGGAGGCCGCTCACCAAACT		
Notch1 AACACCGCCCGTGGATTCAT ACATGTGGCACCCTCGAAGC Notch2 CCTGCCAGGTTTTGAAGGGA GGGCAGTCGTCGATATTCCG Dll1 GCCCTCCATACAGACTCTCCC AGGCGGCTGATGAGTCTTTC Jag1 TGCCCTCCAGGACATAGTGG ACTCTCCCCATGGTGATGCA Rbpj GTTTTGGCGAGAGTTTGTGGAAGAT TGGAGGCCGCTCACCAAACT	CCC	
Notch2 CCTGCCAGGTTTTGAAGGGA GGGCAGTCGTCGATATTCCG Dll1 GCCCTCCATACAGACTCTCCC AGGCGGCTGATGAGTCTTTC Jag1 TGCCCTCCAGGACATAGTGG ACTCTCCCCATGGTGATGCA Rbpj GTTTTGGCGAGAGTTTGTGGAAGAT TGGAGGCCGCTCACCAAACT		
Dll1 GCCCTCCATACAGACTCTCCC AGGCGGCTGATGAGTCTTTC Jag1 TGCCCTCCAGGACATAGTGG ACTCTCCCCATGGTGATGCA Rbpj GTTTTGGCGAGAGTTTGTGGAAGAT TGGAGGCCGCTCACCAAACT		
Jag1 TGCCCTCCAGGACATAGTGG ACTCTCCCCATGGTGATGCA Rbpj GTTTTGGCGAGAGTTTGTGGAAGAT TGGAGGCCGCTCACCAAACT		
Rbpj GTTTTGGCGAGAGTTTGTGGAAGAT TGGAGGCCGCTCACCAAACT	7	
15		
TELL CTCCCCCCACACCACACCACCACCACCACCACCACCACCA		
Lfng CTCGCGCCACAAGGAGATGAC CCGAGGAGCAGTTGGTGAGC	A	
Hes1 CAAAGACGGCCTCTGAGCAC CCTTCGCCTCTTCTCCATGAT		
Hes5 CTCCGCTCGCTAATCGCCTC TCTCCACCGCCACGGTACTT		
Heyl TCACCTGAAAATGCTGCACAC CGTGCGCGTCAAAATAACCT		
Hey2 AGCGCCCTTGTGAGGAAACGA TGTAGCGTGCCCAGGGTAAT	ГG	
Heyl CAGCCCTTCGCAGATGCAA CCAATCGTCGCAATTCAGAA	1 G	
Fgfr2b TGATGGGCTGCCCTACCTCAA CCCCAGCATCCATCTCCGTCA		
Fgfr4 CAGGCCTTCCACGGGGAGAAT CACGGTCCGAGGGTACCACA		

qPCR ChIP

	# of HNF1B			
Name *	binding sites	Forward Sequence (5'→3')	Reverse Sequence (5'→3')	Amplicon genome location
<i>Ngn3-</i> 700bp	1	TGGAGGGTTGGATCCCAAGGTG	CAGAGACGGTCCCTGCTCAAGT	chr10:61,595,110-61,595,193
<i>Ngn3</i> -3300bp	1	GGGGACAGGTGGGGCTTTCTT	GGGACCGAGACTGGCCACTT	chr10:61,592,554-61,592,627
<i>Ngn3</i> -4900bp	1	GGCCCCAAATGGTCGTCAGAAC	CAAGCCAAGTGAGCGCTTGGA	chr10:61,590,840-61,590,975
<i>Hnf6</i> +4950bp	2	CTTGCAGCTTGGTTGATTGA	CGGCAGTACCAGACACTTGA	chr9:74714652-74714752
<i>Cys1</i> -4500bp	4	TGATGGGAGTGTCCCGTGCAA	CATGGCTGGCTGTGCAGAA	chr12:25,371,128-25,371,227
Pkhd1-70bp	1	TCCTGTTGGACTGGAACTCA	AGCCCTTTCTTTGGGTCTCT	chr1:20,608,118-20,608,248
Glis3+120100bp	2	CAACAAGAAGCCCTTTTGGA	CATGTCAGAGATGAGGGAGGT	chr19:28,634,413-28,634,533
Fgfr4+280bp	2	AGCGCACACAGGGCCTTT	GCCCCGGTGGGCAATAAGT	chr13:55,254,476-55,254,555
Bicc1+2857	1	CCCCCAGGACAGTCTCTCTAAAA	TGGCCTTCAAGTCTTCAGAGTG	chr10:71,156,782-71,156,857

 $^{* \}textit{Primer names indicate the approximate position of the HNF1B-binding site/s amplified, relative to the \textit{TSS} of the respective gene.}$