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Fig. 3. Effect of knockdown of pancRNAs on partnered gene expression and on DNA methylation. (A) Expression levels of the indicated pancRNAs
and their genes measured by gPCR in siRNA-injected 2-cell and 4-cell embryos. //17d expression was not detectable (N.D.) in 2-cell embryos. (B) DNA
methylation levels of the corresponding promoters in siRNA-injected embryos. The regions analyzed are displayed in Fig. 1A. (C) Effect of pancRNA knockdown
on blastocyst formation. Asterisks indicate significant differences compared with si Control samples. The numbers of embryos used for injection of si Control,
si pancll17d, si pancMospd3 and si pancTbc1d22a siRNAs were 261, 251, 78 and 70, respectively. *P<0.05; **P<0.01; ***P<0.001. Error bars indicate s.e.m.

patterns in the MII oocyte, sperm, and fertilized 1-cell and 2-cell
embryo by RT-qPCR (Fig. 2B). We confirmed that all of these
pancRNAs were expressed at the 2-cell stage, and found that the
expression of Mospd3 and Thcld22a mRNAs was also upregulated
at the 2-cell stage (Fig. 2B, middle and right panels), whereas the
expression of 7/17d mRNA was first detected at the 4-cell stage
(Fig. 2B, left panel). Thus, expression of the pancRNA preceded or
occurred simultaneously with that of the mRNA at these loci during
early embryogenesis.

Next, we analyzed whether the promoter methylation status reflects
the gene activation/repression status. Since core promoter regions,
which frequently show high CpG density, tend to be constitutively
hypomethylated, and the flanking sequences with lower CpG density
tend to be associated with developmental gene regulation (Meissner
et al., 2008), we surveyed such developmentally regulated regions
using publicly available MethylC-seq data of mouse germ cells and
2-cell embryos (Wang et al., 2014) at the three loci (supplementary
material Fig. S6). Bisulfite sequencing indicated that this region in the
1117d promoter is considerably methylated at the MII oocyte, sperm
and 1-cell stages (Fig. 2C). By contrast, this region became almost
completely demethylated by the 2-cell stage, while the region located
nearer the TSS was constitutively free of methylation, as expected
from the MethylC-seq data (supplementary material Fig. S7).

Similarly, the promoter regions of Mospd3 and Tbcld22a were
methylated at the MII oocyte, sperm and 1-cell stages, and their DNA
methylation levels decreased by the 2-cell stage. The concordance
between the observed kinetics of expression of the pancRNAs and the
changes in DNA demethylation raised the possibility that these
pancRNAs mediate gene activation through epigenetic changes.

Since we previously found that pancRNAs could activate gene
expression in rat differentiated cell lines (Tomikawa et al., 2011), we
tested whether these developmentally expressed pancRNAs could
be involved in the gene upregulation in early mouse embryos by
knocking them down using siRNAs. We found that microinjection
of siRNA for panclll7d, pancMospd3 or pancThcld22a into the
pronucleus suppressed expression of the partner mRNA at the
2-cell and 4-cell stage, when partner expression normally begins
(Fig. 3A), and this suppression was accompanied by a lack of
decline in the methylation level in the respective promoter region
(Fig. 3B; supplementary material Fig. S8). At the //17d locus, this
knockdown effect could be rescued by co-injection of the panclli7d
overexpression vector (Fig. 3B). Overexpressed panclll7d
might work as a sponge for the siRNA, and these pancRNAs
might mediate acquisition of the hypomethylated status of the
corresponding promoters and potentiate subsequent gene expression
after fertilization.
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Developmental defect caused by pancli17d knockdown
during preimplantation stages

To investigate the effects of knocking down the above three
pancRNAs on preimplantation development, we monitored the rate
of successful blastocyst formation in the knockdown embryos
(Fig. 3C). 69.6+6.4% of control siRNA-injected, 64.8+4.0% of
pancMospd3  knockdown and 68.6£6.6% of pancTbcld22a
knockdown embryos successfully developed to the late blastocyst
stage in vitro. By contrast, only 21.5+4.7% of panclli 7d knockdown
embryos reached the late blastocyst stage (Fig. 3C). This
developmental defect was also produced using another siRNA for
panclll7d (supplementary material Fig. S9). Regarding pancMospd3
knockdown, although we could not see clear effects in the blastocysts,
we found a deficiency of hatching after extending the culture of such
embryos. After 5 days, a significant fraction of the pancMospd3
knockdown embryos did not hatch from the zona pellucida, whereas
most of the control embryos hatched (supplementary material
Fig. S10A,B). Similar results were observed in ESCs: pancMospd3
knockdown resulted in a decreased number of cells compared with the
control ESCs (supplementary material Fig. S10C).

Since the effect of panclll 7d knockdown was drastic, we focused
on investigating the roles of this pancRNA in embryonic
development. Many panclli7d knockdown embryos died between
the 8-cell and early blastocyst stages. To establish whether cell death
was enhanced in the pancill7d knockdown embryos, we performed
TdT-mediated dUTP nick-end labeling (TUNEL) staining of the
pancll]7d knockdown embryos at the morula stage (Fig. 4A).
Consistent with a previous report (Brison and Schultz, 1997),
control embryos underwent little apoptosis during blastocyst
formation. By contrast, pancill7d knockdown embryos exhibited
multiple TUNEL-positive blastomeres, suggesting that many
panclll7d knockdown embryos died by the blastocyst stage due
to excessive apoptosis. It is noteworthy that the developmental
capacity to form a blastocyst was restored when recombinant mouse
IL17D protein (rIL17D) was added to the medium at the 4-cell
stage, although the knockdown effect continued until the morula
stage (Fig. 4B,C). The addition of rIL17D significantly increased
the rate of success of blastocyst formation in pancill7d knockdown
embryos (from 21.542.7% to 62.14£5.9%; Fig. 4D). These results
suggest that panclll7d plays an important role in blastocyst
formation by upregulating the partner gene.

In order to assess the role of pancill7d in preimplantation
embryos, we performed RNA-seq of panclll7d knockdown morula
embryos and compared the data with those for control siRNA-
injected morula embryos (Fig. 4E). Gene ontology analysis revealed
that apoptosis-related genes were enriched among the upregulated
genes in the knockdown embryos (supplementary material
Table S4). This is in accord with the observation that aberrant
apoptosis is induced by panclll7d knockdown, as shown in
Fig. 4A. Interestingly, embryonic development-related genes were
enriched among the downregulated genes. The second and third
most highly expressed genes among the downregulated genes were
Nanog and Cdx2, respectively, which encode transcription factors
important for maintaining pluripotency and for the specification
of cell lineages to generate trophectoderm, respectively (Chambers
et al., 2003; Strumpf et al., 2005) (supplementary material
Fig. S11). For example, the importance of pancRNAs for
trophectoderm cell generation was supported by immunostaining
of CDX2 of panclll7d knockdown blastocysts, which showed that
some outer blastomeres of pancill7d knockdown embryos lost
CDX2 expression (Fig. 4F). Therefore, panclll7d seems important
for the capacity to differentiate to generate trophectoderm cells.
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Impairment of in vitro colony formation from pancli17d
knockdown embryos

To further investigate the significance of panclill7d for embryonic
development, we plated the surviving panclll7d knockdown
blastocysts in medium containing mouse LIF and inhibitors for
MEK1/2 (MAP2K1/2) and GSK3 (2i medium), conditions that
are frequently utilized for the culture of ground-state ESCs, and
harvested the cultures after 10 days. Whereas about 70% of the
control siRNA-injected embryos produced ESC-like colonies on
average, only 10-20% of the pancll17d knockdown embryos did
so (Fig. 5A). Even when panclli7d knockdown embryos did
produce colonies, they were significantly smaller than those
derived from control siRNA-injected embryos (Fig. 5B,C),
indicating that panclll7d knockdown decreases the ability to
form a colony. These knockdown-induced impairments were also
rescued by the addition of rIL17D to the culture medium at the
4-cell stage, strongly suggesting that the effects of panclli7d
knockdown are mediated by the downregulation of ///7d gene
expression.

We further investigated the effect of panclll7d knockdown in
ESCs. siRNA-induced panclli7d knockdown resulted in a decrease
in the number of ESCs compared with the control siRNA (Fig. 5D).
When panclll7d was knocked down in ESCs, TUNEL-positive
cells were significantly increased compared with the control
(Fig. 5E). These results indicated that the loss of pancill7d led to
apoptotic cell death also in ESCs. In parallel, we analyzed the
proliferative ability of the panclll7d knockdown ESCs by
performing a S-ethyl-2’-deoxyuridine (EdU) incorporation
experiment. The number of EdU-positive cells was significantly
decreased in the pancill7d knockdown cells compared with the
control cells (Fig. 5F). These inhibitory effects of pancRNA
knockdown on the proliferation of ESCs were reproduced by
mRNA knockdown (Fig. 5D-F). Taken together, these results
indicate that the pancll17d-1117d pair forms a molecular axis that is
necessary for both cell survival and proliferation.

We analyzed the expression of pluripotency marker genes,
including Oct3/4 (Pou5f1), by RT-qPCR. Knockdown of pancill7d
or of //17d mRNA caused significant decreases in the expression
levels of Oct3/4, KIf4, c-Myc and Cdhl, but not of Sox2 (Fig. 5G).
We also performed the embryoid body (EB) formation assay using
shRNA-transfected ESCs (supplementary material Fig. S12). EB
size was altered by transfection of shRNA for pancill7d,
accompanied by increased expression levels of OtxI and Gata®,
which are marker genes for the ectodermal and endodermal
lineages, respectively. This indicated that panclll7d knockdown
causes abnormal EB formation.

Identification of the pathway triggering pancRNA-mediated
gene upregulation

A previous study showed that base excision repair (BER)
components, including poly(ADP-ribose) polymerase (PARP),
contribute to DNA demethylation in preimplantation embryos
(Hajkova et al., 2010). Therefore, we added a PARP inhibitor,
3-aminobenzamide (ABA), to the embryo culture medium to clarify
whether promoter demethylation requires the BER pathway. The
addition of ABA resulted in inhibition of DNA demethylation of the
1117d promoter region at the 2-cell stage (Fig. 6A; supplementary
material Fig. S13), leading to downregulation of the partner mRNA
(supplementary material Fig. S14). However, the addition of ABA
did not change pancRNA expression, suggesting that expression of
panclll7d itself is regulated independently of the BER pathway and
DNA methylation.
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Fig. 4. Developmental defects induced by pancli17d knockdown and rescue by addition of recombinant IL17D protein. (A) TUNEL assay of morula
embryos. Arrowheads indicate TUNEL-positive blastomeres. pancll/17d knockdown embryos showed increased TUNEL-positive cells. Two representative
blastomeres are shown. To the right is a box plot of the number of TUNEL-positive cells in each embryo. (B) Morphology of late blastocysts. (C) Expression levels
of pancll17d and I/17d measured by gPCR in control, pancll17d knockdown and rIL17D-supplemented pancll17d knockdown morula embryos. (D) Survival rate
of control and pancll17d knockdown embryos at day 4.5 of in vitro culture. Two different siRNAs targeting pancll17d were used. (E) Scatter plots of gene
expression in control and pancll17d knockdown morula embryos based on the RPKMs of RefSeq genes. Red dots indicate the genes that show statistically
significant changes. (F) Immunostaining of CDX2 protein in control and pancll17d knockdown late blastocyst. Arrowheads indicate CDX2-negative outer cells
Beneath is a box plot of the number of CDX2-negative outer cells in each embryo *P<0.05; ***P<0.001. Error bars indicate s.e.m.

Considering recent reports showing that ten-eleven translocation
(TET) enzymes are among the key molecules triggering BER
pathways (Kohli and Zhang, 2013; Teperek-Tkacz et al., 2011), we
knocked down Ter3, which is abundantly expressed in early
embryos, and Tet2, which shows lower expression than 7et3 in
preimplantation embryos (supplementary material Table S5). Tet3
knockdown embryos showed significantly higher DNA methylation
levels than control embryos. By contrast, knockdown of 7ez2 did not
induce significant DNA methylation changes (Fig. 6B), suggesting
that Tet3, but not Tet2, is required for DNA demethylation at the
1117d promoter. Fig. 6C summarizes pancRNA-mediated sequence-
specific gene upregulation.

DISCUSSION

The key molecules that enable sequence-specific gene activation to
initiate embryonic development remain largely unknown. Here, we
identified more than 1000 pancRNAs as candidates of such key
molecules in early mouse embryos. To examine the function of the
ZGA-associated pancRNA, we focused on three abundant
pancRNAs: panclll7d, pancMospd3 and pancTbcld22a. We
found that these three pancRNAs had the ability to reprogram the
epigenetic status of promoter regions for gene activation in a
sequence-specific manner. We also proved that pancill7d plays an
essential role in early embryogenesis. Our study thus sheds light on
novel mechanisms by which a fraction of zygotically activated
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Representative images of colonies derived from siRNA-injected embryos.

(C) Box plot of diameter of colonies derived from pancRNA knockdown blastocysts. (D) Number of ESCs 24 h after siRNA introduction by electroporation.

(E) Proportion of apoptotic cells detected by TUNEL staining in knocked down ESCs after siRNA introduction. (F) Proportion of proliferating ESCs, as analyzed
by EdU labeling. (G) Expression levels of pancll17d, I/17d and pluripotency marker genes in ESCs, as detected by RT-gPCR. Gapdh was used as a control.
The expression level in control-transfected ESCs was set as 1. Asterisks indicate significant differences compared with si Control samples. *P<0.05; **P<0.01;

***P<0.001. Error bars indicate s.e.m.

IncRNAs enhance partner gene promoter activity for subsequent
mouse embryogenesis.

The effects of pancRNAs on gene regulation in many
biological processes

In this study, the RNA-seq method was adapted for small-scale
samples to yield RNA-seq data at a level comparable to that
generated from large-scale samples (supplementary material
Fig. S2). Indeed, pancRNAs were detected from more than 1000
promoter regions during ZGA (Fig. 1A). This is consistent with
previous reports showing that thousands of pancRNAs are
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transcribed in terminally differentiated mouse tissues and ESCs
(Sigova et al., 2013; Uesaka et al., 2014). Thus, a substantial
number of pancRNAs seems to be expressed in various cell
contexts, including totipotent stages, as we show here. Since
pancRNAs and mRNAs exhibit coordinated expression changes not
only in somatic cells but also in preimplantation embryos (Fig. 1D),
pancRNAs might be commonly utilized for gene activation from the
zygotic to the terminally differentiated stages. According to their
partner genes, pancRNAs function in the regulation of many
biological processes, a conclusion supported by our panclli7d
knockdown experiments.
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Fig. 6. Epigenetic changes accompanying zygotic pancRNA-mediated
gene activation during early mouse development. (A) DNA methylation
status of ABA-treated 2-cell embryos. (B) DNA methylation status of Tet2 or
Tet3 versus control siRNA-injected embryos. ***P<0.001. (C) A model for
pancRNA-mediated gene activation in early mouse development. At the
2-cell stage, pancll17d expression, together with TET3 and PARP, leads to
establishment of the hypomethylated status at the //77d promoter in a
sequence-specific manner, and thus to //77d mRNA expression starting
from the 4-cell stage. When these steps are compromised, apoptosis
increases and cell proliferation decreases, adversely affecting embryonic
development.

Sequence-specific transcriptional activation mediated by
pancRNAs

There have been several reports on the molecular basis of
IncRNA-mediated transcriptional regulation in frans [for a review
see Fatica and Bozzoni (2014)]. For example, HOTAIR represents a
set of IncRNAs that can influence dispersed genomic regions
(Chuetal., 2011). By contrast, we now think that a single pancRNA
acts to mediate corresponding gene activation in cis: knockdown
of panclll7d, pancMospd3 or pancThcld22a resulted in
downregulation of the partner gene, and this downregulation was
accompanied by a hypermethylated status of the corresponding
promoter regions (Fig. 3A,B). In addition, we found that pancll17d
expression preceded 7117d expression (Fig. 2B; supplementary
material Fig. S15), also supporting the notion that the pancRNA
epigenetically activates its partner gene in cis. However, we cannot
completely exclude the possibility that a pancRNA affects
expression of other genes in frans. Nonetheless, we believe that
the trans effect, if any, on preimplantation development was
relatively small, because several developmental defects caused by
knocking down panclll7d were rescued by addition of rIL17D
protein. These findings strongly support the idea that a pancRNA

specifically regulates expression of the gene with which it shares a
bidirectional promoter region.

The mechanism of pancRNA-triggered gene activation

One possible scenario is that gene activation-associated pancRNAs
specify the genomic position for establishing an epigenetic status
that is conducive to gene activation with TET3 and BER
components (Fig. 6A,B), which are involved in genome-wide
DNA demethylation (Branco et al., 2012; Hajkova et al., 2010).
However, we do not yet know what factors initiate the expression of
gene activation-associated pancRNAs. In this study, we tried to
identify such factors and found strand-specific enrichment of a
CT-rich motif in a set of zygotic pancRNA-partnered genes
(Fig. 1F). The TSSs of the pancRNA-partnered genes provide the
switching points for the observed asymmetric distribution of the
CT-rich motif (supplementary material Fig. S5). Considering the
divergent transcription of mRNA and pancRNA, the distribution
pattern of this CT-rich motif seems to be preferentially located
upstream of both pancRNAs and mRNAs. This raises the possibility
that the coordinated expression of pancRNAs and mRNAs is
regulated by similar machineries. This hypothesis is supported by
the fact that the expression of 426 out of 568 pancRNAs increased at
the 2-cell stage concomitantly with the increase in corresponding
mRNA expression (supplementary material Fig. S3). However, the
factor that binds to this CT-rich motif remains to be identified;
indeed, the CT-rich motif is present upstream of panclll7d and
pancTbcld22a, but not pancMospd3, and therefore information on
additional sequence motifs and their binding factors will be needed
to clarify the driving force that reprograms the chromatin structure in
conjunction with pancRNA activation.

Although the pancRNA expression change seems to coincide
with the DNA methylation change during preimplantation
development, the effect on DNA methylation might be exerted
indirectly. For example, DNA methylation and histone modification
work together in gene silencing, and pancRNAs might initially
affect some epigenetic/transcriptional environmental condition,
such as histone modification status, leading to the DNA
demethylation. Further advances in histone modification analysis
techniques will enable us to dissect the exact kinetics of epigenetic
changes triggered by pancRNA expression and thus aide in the
identification of the molecular complex(es) that functions with
pancRNA for sequence-specific gene activation.

Developmental roles of pancRNAs
It is clear that the panclli7d-1117d pair performs some functions at
the preimplantation stage. We speculate that some of the other
upregulated pancRNA/gene pairs affect embryonic development.
Several IncRNAs have also been shown to be involved in mouse
postimplantation development [for a review see Fatica and Bozzoni
(2014)]. For example, knockout mice of the IncRNA Fendrr, which
is derived from the promoter region of Foxf1, die around embryonic
day 14 due to impairment of heart development. Although
knockdown of pancMospd3 did not cause any detectable
developmental defects in blastocyst formation (Fig. 3C), it must
function thereafter, since mice lacking the Mospd3 gene display
neonatal lethality with defects of heart development (Pall et al.,
2004). This notion is supported by our data showing that
pancMospd3 knockdown caused failure of hatching from the zona
pellucida (supplementary material Fig. S10).

Interestingly, cell death-related genes were enriched among co-
upregulated pancRNA-partnered genes (supplementary material
Tables S1 and S2). These include Bag6, Pdcd2, Map3k7 and Fadd,
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which are essential for embryonic development (Fabian et al., 2005;
Jadrich et al., 2006; Mu et al., 2010; Yeh et al., 1998). For example,
Bag6 knockout mice die with defects of kidney, lung and brain
formation as a result of dysregulation of apoptosis and cell
proliferation (Fabian et al., 2005). In accord with this, our
pancBag6 knockdown experiment showed increased cell death
among ESCs (supplementary material Fig. S16). Therefore,
pancRNAs seem to be produced at a significant number of gene
promoters that should be regulated according to the developmental
context.

This raises the intriguing question of why pancRNAs are
employed within the developmental gene regulation network. One
possibility is that pancRNAs have been adopted to increase the
complexity of the regulatory network system. The novel layer of
transcriptional regulation imposed by the acquisition of pancRNAs
might have contributed to generating numerous varieties of gene
expression patterns during development (Imamura et al., 2014).
Recently, it has been reported that IncRNAs, including pancRNAs,
are frequently regulated by developmentally important factors, such
as homeobox proteins, (Necsulea et al., 2014), supporting our idea
that pancRNAs acts together with other regulatory factors for
complex and orchestrated developmental gene regulation.

The knockdown of pancThcld22a and pancBag6 did not cause
marked defects in preimplantation development. As described
above, pancRNAs function in the regulation of many biological
processes according to their partner genes. In fact, Thcld22a
belongs to the TBCK gene family, whose members are thought to
act as GTPase-activating proteins and to influence cell proliferation
through mTOR signaling (Alexander et al., 2013; Liu et al., 2013).
Thus, although Thcld22a might have a role during development, it
is possible that paralogs of Thcld22a might compensate for the
knockdown effect. The same might be true for pancBag6, the
knockdown of which resulted in only a slight decrease in ESC
number (supplementary material Fig. S16).

Conclusion
We conclude that gene activation-associated pancRNA provides a
new layer of epigenetic regulation during mammalian development.

MATERIALS AND METHODS

Preparation of oocytes, embryos, sperm and ESCs

MII oocytes were obtained from the oviducts of 7- to 8-week-old F1
mice (C57BL/6XC3H) induced to superovulate by intraperitoneal
injection of 51U of pregnant mare serum gonadotropin (Asuka),
followed 48 h later by injection of 51U of human chorionic
gonadotropin (hCG, Asuka). Embryos were obtained after mating the
superovulated females with F1 males. Oocytes and zygotes were
recovered in M2 medium (Sigma) 17 h after hCG injection, and then,
following removal of cumulus cells with 0.03% hyaluronidase (Sigma),
they were either subjected to direct methylation analysis and RNA
analysis, or cultured in M16 medium (Sigma) at 37°C under 5% CO,/air
for the collection of fertilized embryos. Sperm were obtained from F1
male epididymis, and motile sperm of good quality were selected by the
direct swim-up method (Younglai et al., 2001). The embryos were
treated with ABA (Sigma) as previously described (Imamura et al.,
2004a). Blastocysts were plated in N2 medium containing B27
(Invitrogen), 2-mercaptoethanol (Wako), GlutaMAX-I (Gibco), bovine
serum albumin fraction V (Sigma), LIF (Millipore), PD0325901 (Sigma)
and CHIR99021 (Axon) (2i medium) (Ying et al., 2008) and cultured for
10 days. ESC-like colonies were processed for immunohistochemistry.
ESCs were cultured on a 0.1% gelatin-coated dish in a 37°C incubator
under 5% CO,/air, and propagated by trypsinizing and replating every 2
or 3 days. EB formation and in vitro hatching are described in the
supplementary methods.
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Directional RNA-seq library preparation

Total RNA and poly(A)" RNA were extracted from pools, each of which
contained 100 MII oocytes, 2-cell embryos (C57/B6xICR), control siRNA-
injected morula embryos or panclll7d knockdown morula embryos, using
the Dynabeads mRNA DIRECT Micro Kit (Invitrogen). Four replicates
were made for directional RNA-seq library construction using the NEBNext
Ultra Directional RNA Library Prep Kit for Illumina (NEB). In this library
preparation, cDNAs were enriched by 15-cycle PCR. Illumina HiSeq 2000
was used to perform 50 bp single-end sequencing according to the
manufacturer’s instructions. RNA-seq data have been deposited in the DDBJ
Sequence Read Archive (DRA) under accession number DRA002400.

Data mining
Sequencing reads obtained from our directional RNA-seq (DRA:
DRA002400) and publicly available data [NCBI Sequence Read Archive
(SRA)] for ESCs (SRA:SRR315596) were assessed with the FASTX tool
kit (Patel and Jain, 2012) to remove short (<20 bp) and low quality (quality
score <20) reads, followed by trimming of the adaptor sequence.
Preprocessed reads were mapped to the mouse mml0 genome using
TopHat2/Bowtie2 (Kim et al., 2013). Cufflinks and Cuftdiff (Trapnell et al.,
2012) were used for the reads per kb of exon model per million mapped reads
(RPKM) calculation and differential expression analyses. For pancRNA
quantification, we counted only reads that mapped to the antisense sequences
of the promoter regions (—1000 to —1 bp from the TSS) of genes, because
pancRNAs corresponding to antisense sequences of the promoter regions
show the potential to increase mRNA production (Tomikawa et al., 2011;
Uesaka et al., 2014). If a promoter region overlapped with another RefSeq
gene, the promoter was excluded from the dataset to avoid contamination of
the pancRNA pool by protein-coding genes. Hierarchical clustering of
sequenced samples based on gene expression levels was drawn using the
cummeRbund package (http://rgm3.lab.nig.ac.jp/RGM/R_package_list). For
motif searches within the promoter sequences, >10-fold upregulated
pancRNAs in 2-cell embryos were selected by comparing their levels with
those in MII oocytes. The —200 to —1 bp sequences (relative to the TSS) of
370 corresponding mRNAs were examined using rtGADEM, one of the
Bioconductor packages (Gentleman et al., 2004). To verify the presence of a
motif in the pancRNA-partnered gene loci, we further extracted and counted
genes that possessed or lacked sequences showing 90% or more identity to the
candidate motif using the matchPWM program in the Biostrings package
(Pages et al., 2013). pancRNA-mRNA sets subjected to the experiments
described below were selected based on the following criteria: RPKM <0.5
in MII oocytes, RPKM >1 in 2-cell embryos and ESCs (supplementary
material Table S3).

PCR detection of pancRNA and mRNA

To quantify the pancRNA and mRNA expression levels in the embryos, we
purified total RNAs from sperm, oocytes, and fertilized 1-cell
(corresponding to 30 h after hCG injection), 2-cell (44 h) and 4-cell (54 h)
embryos using the Dynabeads mRNA DIRECT Micro Kit and subjected
them to reverse transcription. For ESCs, 3 pg total RNA that had been
extracted using TRIzol (Invitrogen) was utilized for reverse transcription
with SuperScript III (Invitrogen) reverse transcriptase. The synthesized
cDNAs were subjected to qPCR using the KAPA SYBR Fast qPCR Kit
(KAPA Biosystems). The primers used in these analyses are listed in
supplementary material Table S6. Gapdh was used as an internal control.

Bisulfite sequencing

To determine the DNA methylation profiles of the 1/17d, Mospd3 and
Thcld22a promoter regions, sample pools consisting of genomic DNA from
20-50 oocytes or embryos were subjected to the bisulfite reaction using the
MethylCode Kit (Invitrogen) according to the manufacturer’s instructions.
Each bisulfite-treated genome was amplified using AmpliTaq Gold 360
Master Mix (Life Technologies) or EpiTaq HS (TaKaRa) and the specific
primers listed in supplementary material Table S6. In order to avoid PCR bias,
we subcloned more than five PCR bands as previously described (Imamura
et al., 2005), and performed bisulfite sequencing of more than 20 of the
resulting subclones, for each sample. Visualization of MethylC-seq data is
described in the supplementary methods.
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pancRNA knockdown and overexpression experiments

We microinjected 5-10 pl of 2 uM siRNA that targeted pancRNA of //17d,
Mospd3 or Thcld22a (supplementary material Table S7), together with
5 ng/ul N2-EGFP vector (Clontech), into the pronuclei of fertilized embryos
21 h after hCG injection. In a rescue experiment of siRNA knockdown,
S ng/ul panclll7d overexpression construct [—706 bp to —418 bp relative
to the TSS of //17d in pRC/CMV (Invitrogen)] was simultaneously
microinjected into the pronuclei. In the case of siRNAs that targeted 7et?
and 7et3 mRNAs, 5-10 pl of each siRNA at 50 uM was injected into the
cytoplasm of embryos 14 h after hCG injection. As a negative control for
siRNA experiments, we used the MISSION siRNA universal negative
control (Sigma). siRNA-injected embryos were used for DNA methylation
and RNA analyses. To look for possible morphological changes, in vitro
culture was continued for 3 more days. In some cases, recombinant IL17D
(R&D Systems) was added to a final concentration of 100 ng/ml at the 4-cell
stage.

For knockdown experiments, ESCs were transfected with each siRNA
(100 nM final concentration) as listed in supplementary material Table S7,
together with pEGFP-N2 vector (Clontech), by electroporation with the
Neon Transfection System (Invitrogen). At 24 h after transfection, cells
were used for TUNEL assay, EdU labeling assay or RT-qPCR. For longer
duration knockdown experiments in ESCs, pLLX-shRNA expression
vectors, which were generously provided by Drs Z. Zhou and M. E.
Greenberg (Lois et al., 2002; Zhou et al., 2006) and were modified to
express GFP together with a puromycin resistance gene under the ubiquitin
C promoter, were prepared as listed in supplementary material Table S7.
Human embryonic kidney cells were used as producers of lentiviruses that
contained the modified pLLX-shRNA expression vectors. After 2 days of
infection, ESCs were selected with puromycin for 3 days to check their
phenotypes.

Cell staining

Immunohistochemistry was performed as follows: fixation with 4% PFA
for 20 min at room temperature; washing twice in PBS; permeabilization
and blocking in blocking buffer (0.1% Triton X-100 and 3% FBS in PBS)
for 1 h at room temperature; overnight incubation with primary antibodies
diluted 1/500 in blocking solution; washing three times in PBS; incubation
with Hoechst 33258 (Nacalai Tesque) and secondary antibody diluted 1/
500 in blocking solution for 1h in the dark at room temperature; and
washing three times in PBS. Imaging was performed with a Leica AF6000
microscope. The primary antibody mouse anti-CDX2 (MU392A-UC,
BioGenex) was used for immunostaining. CF488A donkey anti-mouse
IgG (Biotium) secondary antibody was used to visualize signals. For the
TUNEL assay, cells were stained with TMR Red using the /n Situ Cell
Death Detection Kit (Roche) according to the manufacturer’s instructions.
For the EAU assay, EdU of the Click-iT EdU Imaging Kit (Invitrogen) was
added to the ESC culture medium by exchanging half the medium and
culturing for 4 h; the cells were then fixed with 4% PFA, permeabilized
with 0.1% Triton X-100 in PBS, and stained with 1x Click-iT Reaction
Buffer and Hoechst 33258.

Statistical analysis

All data are reported as the meants.e.m. Student’s #-test was used for
comparisons between two groups. Unless there is a specific statement about
the number of replicates, three replicates were analyzed for each experiment.
Tukey’s multiple comparison test was used for comparisons among three or
more groups. The Mann—Whitney U-test was used to compare DNA
methylation levels among samples.
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