Supplementary Materials and Methods

PCR Conditions

$1.0 \mu \mathrm{l} \mathrm{w}^{1118}$ genomic DNA
$31.5 \mu \mathrm{l} \mathrm{dH} \mathrm{O}^{\mathrm{O}}$
$10.0 \mu \mathrm{l}$ Phusion Buffer (5X)
$3.0 \mu \mathrm{l}$ Forward primer ($0.2 \mu \mathrm{M}$ final concentration)
$3.0 \mu \mathrm{l}$ Reverse primer ($0.2 \mu \mathrm{M}$ final concentration)
$1.0 \mu \mathrm{l}$ dNTPs (25 mM each)
$0.5 \mu \mathrm{l}$ Phusion DNA Polymerase

Step 1: $98^{\circ} \mathrm{C} 30$ seconds
Step 2: $98^{\circ} \mathrm{C} \quad 10$ seconds
Step 3: $68^{\circ} \mathrm{C} 30$ seconds
Step 4: $72^{\circ} \mathrm{C} \quad 30$ seconds/kilobase
Step 5: $72^{\circ} \mathrm{C} \quad 10$ minutes
Steps 2 through 4 cycled 35 times

Cloning Strategy

Fragment E1 was amplified from w ${ }^{1118}$ genomic DNA using primers (Listed in Table S1) that added a Stul and Xbal restriction enzyme site to the 5' and 3' end of the fragment sequence, respectively. The amplified PCR product was digested with Stul and Xbal restriction enzymes (NEB Catalog R0187S and R0145S), as was the expression vector placZ-attB. Both the digested fragment region PCR product and the digested placZ-attB vector were purified using the Thermo Scientific GeneJET PCR Purification Kit (Product K0701). The purified, digest placZ-attB vector was phosphatase-treated prior to ligation (NEB Catalog M0289S). The phosphatase enzyme was inactivated by high-temperature incubation but the reaction was not further purified. The digested Fragment E1 PCR product was ligated into the phosphatase-treated placZ-attB plasmid using T4 DNA Ligase (NEB Catalog M0202S). The ligation reaction was used to transform DH5a Subcloning Efficiency Competent Cells (Life Technologies Catalog 18265-017). Cultures were started from the transformation colonies, mini-prepped, and the purified plasmids were sequenced to ensure proper ligation.

Fragments E2 and E3 were both amplified from w ${ }^{1118}$ genomic DNA using primers (Listed in Table S1) that added the Gateway recombination sequences to the 5' and 3' end of the fragment region. The amplified fragment PCR products were cloned into the pDONR201 vector using the Life Technologies Gateway BP Clonase Kit (Product 11789013). The recombined plasmids were used to transform DH5a Subcloning Efficiency Competent Cells (Life Technologies Catalog 18265-017). Cultures were started from the transformation colonies, mini-prepped, and the purified plasmids were sequenced to ensure proper integration of the fragment. The two pDONR201-fragment plasmids were then used to move the enhancer region into the final destination vector pglacZ-attB using the Life Technologies Gateway LR Clonase Kit (Product 11791019). The recombined plasmids were used to transform DH5 α Subcloning Efficiency Competent Cells (Life Technologies Catalog 18265-017). Cultures were started from the transformation colonies, mini-prepped, and the purified plasmids were digested to ensure proper integration of the fragment.

Fragment E1 Sequence

CCCATCATGTGTGTGAAATACAATCGTGGATTTCTTGCCCAGAAACCCTGCAACTTCTTCGGTGCAATG GAGTGGGAGAGAAGTCGAGGCGCCTCGAACTCTTATGTGTGTTCAAGATGTCGTGGACTCAAATTAAG ATAAGATGCAGATAAGCCGTGCATTTCGATTTAGCCGTTTGAAAACTCGTTAATAAGAATTTGGTCAAT CCACTGATAACGACTAGTTTTCCATTGAACGGAGGCGCATAACGCTTATCTTTGTTAGGAATAAATATG ACAAATTGAACGACTACCGTTTAATCGTTTGTCTATATACGAAAACTTAACAGGATTGTTCGAGCTATCA GTTTATTTGAATAGTTATTGTTAATGAAAACTACTACTAACTAGCCCAATATAATATATTATGAATATTTA CTCTTCTTATTTTCAAATGATTTAAAATTTTCACCATTCCACAGCGATTAAAATCTAATTTACCCATGCAT ATATTTAATATTCATTCTGTAATTAATCAAGCCCTTGTTGAACCACTCGCATTGTCTTTTTCGCCTTTTCG TGTTGATTGTGGAACCTCCTTATCCCACAAAACACTTTTCATTCATTTTCATGCTCATTCACAAAACATG AGAAAAAAAAAAGAAAAACAAACATTGCAGTCGTGAGAGGAAAATTATTGAGCGAGAGTTACTGTTCGT GTTTTCTCATTTTCAGCTGAGAAAAGCAGCCGACCAATCACAAAACCATTTCCCCTTTACAAAAAACCG ATCATTTTGCATCTCGTGGAGAGTATTCAGATTTGTTTGGAGAGTTTCGGAGAGGAACTCGTTAAGCCG GGTCTACAAAGGTGAGTATCTGTGGACCGTGGTGGAGTCAGGGGAAATGTTAGTGCTTTAAAAAGTGT CTACTATGTGTGGAATTTGGATTGTATCTTGTGGATTGGATATTGTGGTAAGGTTGAGTTTCATTTGGTA TCTCGGGTAGAAGTCAATGAGGTGGATGTTCGGGCACACAGGCTGTAGAACTTGTTGGATATTTTGTC AAGAACTGAAAGTATCCGAAAGGATTAATTCATAGCATATATACCTCAGTTGTATTTTGAATTATTTTAAA TTAGTTTTCTCAGAATTCATGGGCTTCACACTACACATCTTCCCCTCTTAAGATCTCAGGCTTAAATTCG TACTCCATTCTCATTGTGGATTTGAAATGATGACTGTGAAGACCAAACACGAAGGGCTACCCCTTAATT CCACATTCTTGTCCACCAAAGCAGACCTCTCCGCAACTCACCTCTTAGGAACTCTCCTAAATTCCGGTT TCAAGTTGTGGTCCAAGTTCCACATGGACACCAATGAGACACATTCCCCAGTCTCCACTCTCCAACCA AGTACATATCTCTCTCCAGCCGAACGAACCCGAGAGCGAAGACTCCGCCTATCGGATTCGGAAATGCC CGTTCGGGGGGTATAAAAGCGGGCGCTCTGAGCGAGCACCACTC

Fragment E2 Sequence

GACTTCTATGTGGCTTCCATCGCAACTATTACTTAGCGCTCCTTTGATGAATATTTTTATGTATATTTTTC TGCTTCACTAGAATGCTTGACTTATAGTTATTGGTCCCATGATCTGCATACCCCTAACGCAAATCAATC GGCCCATTGCGAGTCTGAAATCCAGCTGAGCTCGGCAGTTATACCCATGCGTAAACAAAAAAAAAGGC ATTTCTGTTTCAGTTCCCATTCCCACGCAATTGAGTTTATTGTTTCGCCCGGAGAAAAGGGAAAGGGG GCGACTGGAGCGAGTAAGTAAACAAAAGCTCAGCGATCATCGACGCCTCAATGGAACTTTTTTTGCTA CGAAATTAGTATTCAGTTACCATACGGACAACAACAAGTTAAACAAACCTGAAAAAAAACATGGACACA GGCCGGATGCGGCTAAAGCAAAAAAAGTCCAAGCCAAGAAGCCTCGACTGCAAGTGGGATCTCTGAT CTTGGATCACCAATTGCCAATCATCATCGCTGGCCATATGCAAAATATGTTTATAAATAAACGACACTG AAAGAAGTGGATGTTTACCCAAGTTTCTGCTCAAGATTTAGTTTTAACCGAAATGGTGAAGTGGAGAGC CTTAAATTTGTGAATGAACTTTATAGTAGTTATAACATTTTGTATTACAGCACTTATCACATGGGCACCA CAAGATACCATTATATTTCGCAATTGCCACGGGAAGTGTAGAAATTTTTATCGGTGCAGCGAAACGAAA TCGGTTCCGAATTCCAAGGCGAAGTCATTAATGGGATGTCACTGGAGAGTGACAGGGCAGAGCACCC CTTTAATGGCAACTAGATGTCCTCAGCCCAGCTGAGATTGGAATGGAATCAGTTCGGCTGGGACTGGG ATTTCAATGGGGATCGGATCGGATCGGATGGGATCGCATTGGAGATTGGGGCTCGAGGAGCGGGACT GAGTGACGGGTATTGGATTTCAACATGCAATGCACGCGGCGCGGCATGCGGCTGCATATCTGCAACG CCATCTCTGGGATACGTCGGGATCCCCTTATCCCCTTATCCCCGATTTCCTATCCCAATATATTATATAT ATATGAAATACAAAAAAAAAAAGGCACCGCAAGTGCCCGCCCGCTGATTGACATGTGATCCTCATCTTC ATCGCATCCTCCACAAGTTTCTATGGCTTGCAAATAGCGGCCCTCTTGCCTTCAGATTTAAATACACTT TGAATATTAAGTTTATACTTGTGGTATATATTGAATTAAATCGAAGATTCTCAGGAAGTGCATCTTAGAT ATAGGTAAACCAACTGCAATGCAAACGAACTACAATTTACCATCAGATGTAGGGTATTTAAATTGCGTA TTTATAGATTTTCTACATTTTTTTCCAGGTTTCTGCTGCTTTTAACCTGTTGTTGGTTCTTCGGCGGCGC TGCTGATTTGTCATTCAGGCGAAACACTCGCGAGTCGTAAAGTAAGCTCCGTTTCAGTTCCAGTCTCCT GAAATCTGGCGAAGAAGACGTGAAATCATCTCGAGACGTCGTTGTTGCAGCAGTCATAAAATTATGAT CGGTATTTTTTAGCCTTCCGTTCCCCTGGGAAATTTGAACTGTGTCGCTGGTTTTTGCCAGCATTTTTTA GTTATTTCGAGTCTAGTTTTTCGACATGGAACATGGATTTCTGCTGTATTTCATGCAACACCTTGTTCCC CGATTTCCAGGAACATATGTATGTATGATCTCGGGACATTCCTGAACTGCGTTTCCACGGAAACTTGCA AATAGACCGTAGTAATTAAAGGCACGAAAGCCGAAGAGCAATAAACACAAGCTTTTCGAGCCCAGTCA TGTCTCCCATTCAGCCATAGCGAACCAATTCAAAACCATTTCTAACGCAGACGATAACCAGAGAGAGA CGTGTCGTTTTTCACAAACAACGACGCGCCCGCTCATTTTCAATGAAAATTTCCACAATTTCCTCAATG GATCGTCGTCGACCCATCATGTGTGTGAAATACAATCGTGGATTTCTTGCCCAGAAACCCTGCAACTTC TTCGGTGCAATGGAGTGGGAGAGAAGTCGAGGCGCCTCGAACTCTTATGTGTGTTCAAGATGTCGTG GACTCAAATTAAGATAAGATGCAGATAAGCCGTGCATTTCGATTTAGCCGTTTGAAAACTCGTTAATAA GAATTTGGTCAATCCACTGATAACGACTAGTTTTCCATTGAACGGAGGCGCATAACGCTTATCTTTGTT AGGAATAAATATGACAAATTGAACGACTACCGTTTAATCGTTTGTCTATATACGAAAACTTAACAGGATT GTTCGAGCTATCAGTTTATTTGAATAGTTATTGTTAATGAAAACTACTACTAACTAGCCCAATATAATATA TTATGAATATTTACTCTTCTTATTTTCAAATGATTTAAAATTTTCACCATTCCACAGCGATTAAAATCTAAT TTACCCATGCATATATTTAATATTCATTCTGTAATTAATCAAGCCCTTGTTGAACCACTCGCATTGTC

Fragment E3 Sequence

CATTGTTAATCGTATCCTGCGTAATAGCATAATAATCCCTAATCGCATCTGATCAGTTCACCTGGTTGAA ACACTATCCCTTTCTCTCTCTCGCTCAATTCCCCGTCCCTGTCCCGCACACTATCGAAACGCCGGCTG CACGATTCCCATTCGCATTACCACTTTGGCTTCCATCGATATGTCCTTTGTGCGCCTTTTGTCGCCGAG TGTCCTTTTTACCCTAACTACGGGGCTGGGGTTATTTTGACAGCAGTTCATTTGCCTTCTGCCGCCGTT TTCACTGCTGTTTCACTTTTGGCAAAAACACACAAAAAAAATTTATGAAATTATGCCCAATCCAAATTTA CAAAATTCAACAAAAATACTTCTATGTGATATAAAAACTTATGAGCTCCATATATATTTCTTTTTGAAACT GTAAGAATTGCTTCGATATAAATTAGGAATTTATTTCAGTGCAGCTACTCAGCAGTTCGATTGGGGTTTA AGTTTGGTTTTCCTCTTGAAGCCATGTTTTAGTTTGTTTTATCCTCAATGAGTCGACTTCTATGTGGCTT CCATCGCAACTATTACTTAGCGCTCCTTTGATGAATATTTTTATGTATATTTTTCTGCTTCACTAGAATGC TTGACTTATAGTTATTGGTCCCATGATCTGCATACCCCTAACGCAAATCAATCGGCCCATTGCGAGTCT GAAATCCAGCTGAGCTCGGCAGTTATACCCATGCGTAAACAAAAAAAAAGGCATTTCTGTTTCAGTTCC CATTCCCACGCAATTGAGTTTATTGTTTCGCCCGGAGAAAAGGGAAAGGGGGCGACTGGAGCGAGTA AGTAAACAAAAGCTCAGCGATCATCGACGCCTCAATGGAACTTTTTTTGCTACGAAATTAGTATTCAGT TACCATACGGACAACAACAAGTTAAACAAACCTGAAAAAAAACATGGACACAGGCCGGATGCGGCTAA AGCAAAAAAAGTCCAAGCCAAGAAGCCTCGACTGCAAGTGGGATCTCTGATCTTGGATCACCAATTGC CAATCATCATCGCTGGCCATATGCAAAATATGTTTATAAATAAACGACACTGAAAGAAGTGGATGTTTA CCCAAGTTTCTGCTCAAGATTTAGTTTTAACCGAAATGGTGAAGTGGAGAGCCTTAAATTTGTGAATGA ACTTTATAGTAGTTATAACATTTTGTATTACAGCACTTATCACATGGGCACCACAAGATACCATTATATTT CGCAATTGCCACGGGAAGTGTAGAAATTTTTATCGGTGCAGCGAAACGAAATCGGTTCCGAATTCCAA GGCGAAGTCATTAATGGGATGTCACTGGAGAGTGACAGGGCAGAGCACCCCTTTAATGGCAACTAGA TGTCCTCAGCCCAGCTGAGATTGGAATGGAATCAGTTCGGCTGGGACTGGGATTTCAATGGGGATCG GATCGGATCGGATGGGATCGCATTGGAGATTGGGGCTCGAGGAGCGGGACTGAGTGACGGGTATTG GATTTCAACATGCAATGC

Development 142: doi:10.1242/dev.120618: Supplementary Material

Supplemental Figure 1. Preliminary search for enhancers driving midline expression. (A) Depiction of the genomic region upstream the emc transcriptional start site located on 3L and the sub-genomic regions that were tested for the ability to drive expression at the midline. The genomic regions shown in aqua were isolated and fused to GAL4 by Gerald Rubin's laboratory at Janelia Farm. We cloned the regions in red and fused them directly to a lacZ reporter. (B-Q) Expression patterns driven by the eight genomic fragments in early third instar eye discs. None appear to direct reporter expression to the D/V midline. Dorsal side is up and anterior is to the right.

Supplemental Figure 2. Expression of fng and slp throughout the eye with ey-GAL4 eliminates enrichment of emc expression at the midline. (A-C) Over-expression of fng throughout the entire disc using ey-GAL4. (D-F) Over-expression of s/p1 throughout the entire eye disc with ey-GAL4. In both experiments the enrichment of emc expression at the midline is abolished. Dorsal side is up and anterior is to the right.

Supplemental Figure 3. Notch signaling can activate emc expression. (A-D) Over-expressing the intracellular domain of Notch (hsFLP/ UAS- $N^{i c d}$; Act>y>GFP/+; emc-lacZ) in flp-out clones (GFP positive cells in A) show a cell autonomous activation of emc expression. Yellow arrow highlights an example of a clone in which emc-lacZ is activated in response to higher N signaling. Dorsal side is up and anterior is to the right.

Supplemental Figure 4. emc is regulated independently of the E (spl) complex. (A-C) Expression of an RNAi line for $E(s p l) m \beta$ (hsFLP/+; Act>y>GFP/+; P\{TRiP.JF02100\}attP2/emc-lacZ) in flp-out clones (GFP positive cells in B, C) does not alter emc-lacZ midline expression. (D-F) Over-expression of $E(s p /) m \beta$ ($h s F L P /+$; Act>y>GFP/+; UAS-E(spl)mB/emc-lacZZ) in flp-out clones (GFP positive cells in E, F) does not alter emc levels. (G-I) Flp-out clones of $E(s p l) m 8$ (hsFLP/+; Act>y>GFP/+; UAS-E(spl)m8/+: GFP positive cells in H, I) do not affect Emc protein levels in the eye disc. ($\mathrm{J}-\mathrm{L}$) Over-expressing $E(s p l) m 5$ (hsFLP/ UAS$E(s p l) m 5$; Act>y>GFP/+) in flp-out clones (GFP positive cells in K, L) do not show differences in levels of Emc protein. Dorsal side is up and anterior is to the right.

Supplemental Figure 5. The JAK/STAT pathway does not regulate emc in the developing eye. (A-C) Over-expression of stat92E in flp-out clones throughout the eye field (GFP positive cells in B, C) has no effect on Emc protein levels. (D-F) Mutant clones of stat92E (eyFLP/+; stat92E ${ }^{85 c 9}$, FRT82B/Ubi-GFP, FRT82B) induced throughout the eye (lack of GFP in E) also do not alter normal Emc protein levels. Dorsal side is up and anterior is to the right.

Supplemental Figure 6. Dachsous expression is not regulated by Emc in the developing eye. Two examples in which $d s$-lacZ expression is examined in emc $c^{A P 6}$ loss-of-function clones. (A-D) Ventral emc ${ }^{\text {APG }}$ clone, (E-H) Dorsal emc ${ }^{\text {AP6 }}$ clone. At both margins, ds-lacZ expression appears unaffected. Dorsal side up and anterior is to the right.

SUPPLEMENTARY TABLE

Table S1

Click here to Download Table S1

