

Movie 1. Microtubule dynamics in the epidermis of C. elegans elongating embryo. Five-dimensional time-lapse (xyzt λ) of a wild-type embryo expressing EBP-2::GFP and DLG-1::RFP. Images are maximum intensity projections of 4 z planes acquired in the GFP and RFP channels, separated by $0.3 \mu \mathrm{~m}$ steps. 40 stacks were acquired every 500 ms during 32 sec (total movie time). Movie is played back in 32 X real time. This movie illustrates how microtubules come in close contact with adherens junctions and the difference in microtubule behavior between seam cells and ventral cells. For EB1 quantifications, the GFP channel was acquired alone (see Movie 2); a single RFP image was generated at the end of the movie in order to visualize cell borders.

Movie 2. Typical EB1 movie used for quantifications.

Four-dimensional time-lapse (xyzt) of a wild-type embryo expressing EBP-2::GFP. Images are maximum intensity projections of 3 z planes ($0.3 \mu \mathrm{~m}$ step). 100 stacks were acquired as fast as possible during 30 sec . Movie is played back in 10X real time.

Movie 3. Microtubules dynamics in epidermal seam cells.

Time-lapse movie of a control embryo expressing DLG-1::RFP and TBA-2::GFP, labeling junctions and microtubules, respectively. Images were acquired every 200 ms , timeaveraged over 10 frames, and played back in 30X real time. The red channel has been acquired before the imaging starts to position the junctions. This movie illustrates that microtubules polymerize in dorsal ventral towards seam-dorso-ventral junctions. In addition, microtubules originate from aster-like structures (potentiallly corresponding to bundled microtubules) in the seam cells, or occasionally from seam junctions (especially in the body).

Movie 4. Microtubules dynamics in epidermal ventral cells.
Time-lapse movie acquired in the same conditions as Movie 3. This movie shows that microtubules polymerize from the region corresponding to hemidesmosomes.

Movie 5. E-cadherin mobile fraction is lower in let-502; spas OE embryos.
Fluorescence recovery after photobleaching (FRAP) movie of a control (left) and a let502; spas OE mutant (right) expressing the E-cadherin HMR-1::GFP reporter. Images are 152 single z planes acquired during 3 :min 55s. The arrow indicates the photobleached junction. Movie is played back in 47X real time.

Movie 6. Intracellular E-cadherin vesicles movements are limited in let-502; spas OE embryos.
Movie of a control (left) and a let-502; spas OE mutant (right) expressing the E-cadherin HMR-1::GFP reporter. E-cadherin-positive vesicle movements are obvious in the control while their amplitude is more limited in the double mutant. Images are 120 single z planes acquired at 2 images $/ \mathrm{sec}$. This movie has been corrected for photobleaching by the histogram matching method, and is played back in 10X real time.

Fig. S1. NOCA-1 and GIP-2 reporter localizations are microtubule-independent.
Confocal spinning-disc images of embryos expressing the NOCA-1::GFP (A) and GIP2::GFP (C) reporters in the indicated backgrounds (right), at two different stages. (B, D) Quantification of the fluorescence intensity of adherens junctions (AJ) between seam cells (asterisk) and hemidesmosomes (HD, arrowhead) in these embryos, showing that spas $O E$ embryos express the two reporters at levels comparable to that of controls, whereas noca-1(RNAi) embryos show a markedly reduced intensity of NOCA-1::GFP. Fluorescence intensities were normalized to control average intensity. Bars indicate mean and s.d., ns non significant, ${ }^{* * *} \mathrm{p}<0.001$ (E-F) Microtubule growth rates in wildtype and let-502 embryos. (E) Spinning-disc confocal 4D projections from movies of embryos co-expressing the EBP-2::GFP and the junction DLG-1::RFP reporters (to visualize cell borders), grown at $25^{\circ} \mathrm{C}$. (F) Scatter dot plot of the microtubule (MT) growth rate ($\mu \mathrm{m} / \mathrm{s}$) extracted from the movies, in dorso-ventral (DV) and in seam cells. In let-502(sb118ts) mutants, microtubules polymerize slower, and the growth rate difference between seam and DV cells is attenuated. Control: $\mathrm{N}=803$ tracks in DV cells, $\mathrm{N}=1045$ in seam cells, in 8 embryos analyzed. let-502(sb118ts): $\mathrm{N}=416$ tracks in DV cells, $\mathrm{N}=198$ in seam cells, in 4 embryos analyzed. Bars indicate mean and s.d., ${ }^{* * *} \mathrm{p}<0.001$

Fig. S2. Heat-shock Spastin efficiently degrades microtubules in early embryos and epidermal Spastin triggers low lethality.
(A) Color bar representing the time scale of embryonic development, and the different time windows (double-side arrows 1, 2 and 3) at which the 61 hsp::spastin transgenic embryos were subjected to a heat-shock (HS) treatment. (B) DIC images corresponding to the stage reached 6 hours post-HS for the 3 classes of embryos. In class I embryos (early HS), blastomeres stopped dividing, resulting in a premature developmental arrest ($\mathrm{N}=17$). Class II embryos (HS around the lima-bean stage) arrested during elongation $(\mathrm{N}=18)$ and often show bulges (arrowhead). These embryos have large cells, their number has not been precisely counted. Class III embryos (HS after the comma stage) continued to develop normally ($\mathrm{N}=26$). ($\mathrm{B}-\mathrm{D}$ ") Confocal spinning-disc projections of
embryos expressing the α-tubulin reporter ($\mathrm{B}-\mathrm{B}$ ", control) and the hsp::spastin construct (C-D series, class I and II respectively). For each genotype, the corresponding mCherry channel ($\mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$) and the resulting merged image ($\mathrm{B}^{\prime \prime} \mathrm{C}^{\prime \prime} \mathrm{D}^{\prime \prime}$) are shown. Note the strong microtubule degradation in all mCherry-positive cells. (E) Bar graph showing the embryonic lethality in various transgenic lines expressing Spastin under different epidermal promoters (lin-26p, pan-epidermal; elt-3p, dorso-ventral cells, ceh-16p, seam cells, for which three independent lines are shown). Bars indicate mean and s.d., ns non significant, * $\mathrm{p}<0.05^{* * *} \mathrm{p}<0.001$.

Fig. S3. Epidermal Spastin expression triggers microtubules degradation without affecting epidermal cells number or the DLG-1 reporter.
(A-D) Confocal spinning-disc projections of embryos expressing the junction reporter DLG-1::RFP; the 10 seam cells are named in the control (H0-H2, V1-V6, T). For each genotype, the bottom numbers indicate in how many embryos the correct number of seam cells has been counted. Note that epidermal Spastin expression did not affect seam cells division, and that the DLG-1::RFP pattern is unaffected in spas $O E$ embryos. (E-G") Confocal spinning-disc projections of embryos expressing the α-tubulin reporter ($\mathrm{E}-\mathrm{E}$ ", control) and the dpy-7p::spastin construct ($\mathrm{F}-\mathrm{F}$) or a deleted control version dpy$7 p::$ spastin Δ (G-G"; see Fig. 3A the position of the deletion). For each embryo, the corresponding mCherry channel ($E^{\prime} F^{\prime} G^{\prime}$) and the merged image ($E^{\prime \prime} F^{\prime \prime} G^{\prime \prime}$) are shown. In F, microtubules have a degraded dotty appearance (quantified in Fig. 3C), whereas in G they still appear linear, indicating that only full-length Spastin could trigger a deleterious effect.

Fig. S4. Spastin expression induces bulges, especially in the head.
(A-C) Confocal spinning-disc projections of embryos co-expressing the α-tubulin and the junction DLG-1::RFP reporters, in wild-type (A), elt-3p::spastin (B), and let-502(sb118ts); dpy-7p::spastin (C) backgrounds. ($\mathrm{A}^{\prime}-\mathrm{C}^{\prime}$) Same embryos as on top but only the green channel (TBA-2::GFP) is shown. In B, mosaic embryo where only two dorsal cells express a high level of Spastin and form a protrusion (arrow). A protuberance is also apparent in a ventral cell of the head in C (arrow; observed in 17/24 let-502; spas OE embryos). Asterisks, seam cells position.

Fig. S5. Stills extracted from timelapse DIC movies.
DIC images were extracted from videomicroscopy analyses on embryos, allowed to develop on a microscope stage set on $23^{\circ} \mathrm{C}$. Time (min) is indicated. spas OE embryos, noca-1 (m) and noca-1 $(\mathrm{m} / \mathrm{z})$ mutant develop slower than controls but reach the final stage of elongation. By contrast, both let-502; spas OE and let-502, noca-1(m / z) have a very slow pace of development (quantified in Fig. 4C) and eventually fail to elongate. This presentation was preferred to movies, to allow a better comparison between genotypes.

Fig. S6. Spastin expression has more dramatic effects in let-502 than in mlc-4 mutant backgrounds.
(A) DIC images of representative hatchlings. In c, d and f, the mCherry channel has been superposed to visualize Spastin expression. Note the bulge in the head of the let-502; spas $O E$ larva (d, arrowhead). (B) Scatter dot plots showing the body length ($\mu \mathrm{m}$) of newly hatched larvae shown in A. Identical lower case letters in A and B correspond to the same genotypes (indicated). Note the amplitude of size difference between b-d (major reduction of size in let-502; spas $O E$) and e-f (minor reduction in mlc-4; spas $O E$). Bars indicate mean and s.d.

Fig. S7. Restoring myosin II activity in let-502; spas OE animals does not rescue the elongation defect.
(A) DIC images of representative let-502; spas OE larvae. Both the mCherry and the GFP channels were superposed to visualize the presence of the MLC-4DD transgene -in which the regulatory Myosin Light Chain residues Ser18 and Thr19 phosphorylated by ROCK have been mutated to Asp- attested by the presence of the pharyngeal MYO2::GFP co-injection marker. Note that the two larvae appear very similar in size. (B) Scatter dot plots showing the body length ($\mu \mathrm{m}$) of let-502; spastin larvae expressing (or not) the constitutively active form of myosin II (MLC-4-DD) under different promoters: $m l c-4 p$ for the endogenous pattern, ceh-16p for lateral cells, and elt-3p for dorso-ventral cells. All measurements were done at $23^{\circ} \mathrm{C}$ A.E.L., after egg laying. None of the constructs
significantly rescued the elongation, as attested by the p value. Bars indicate mean and s.d. (C) MLC-4::GFP is not affected upon Spastin expression. Confocal spinning-disc top projections of embryos expressing the myosin II regulatory subunit reporter MLC4::GFP construct, at two different stages. spas OE embryos (bottom) show a similar pattern compared to the control (top), with an enrichment of MLC-4::GFP in the seam cells (asterisk).

\times normalized data - fitted modeling

$\mathbf{M}_{\mathbf{f}}$	0,66
Tau $_{1 / 2}$	0 m 54 s
$\mathbf{R}^{\mathbf{2}}$	0,98

Fig. S8. Individual FRAP curves.
(A)- Exponential formula used to fit a curve on the FRAP experimental data (see Methods). The graph shows an illustration for a control embryo. Mobile fraction, halftime recovery (tau) and coefficient of determination (R^{2}, goodness of fit), are indicated in this example. (B)- Individual fitted curves for all analyzed genotypes, corresponding to the average bar graph shown in Fig. 5K.

Fig. S9. Spastin expression and weakened hemidesmosomes prevent embryonic elongation.
(A-D)- DIC images of vab-10(e698) embryos (A) and vab-10(e698); spas OE mutants (BD), in which the mCherry channel has been superposed. Initially, double mutants are normal (B), but they stop elongating when muscles become active, showing signs of muscles detachments (23/28 embryos, arrows, C-D). (E) Bar graph displaying the percentage of embryonic lethality in these strains.

Fig. S10. SYX-5::GFP localizes as puncta and along adherens junctions in the epidermis.
(A)- Body size measurements of newly hatched larvae of the indicated genotypes at the indicated temperatures (below). Note that syx-5 loss of function enhances the phenotype of let-502 animals but does not affect that of spas $O E$ animals.
(B)- Confocal spinning-disc projections of embryos expressing the SYX-5::GFP construct at two different stages. The predominant pattern is punctate (presumably corresponding to the Golgi apparatus), and a faint GFP signal is detected at the level of junctions (arrows). Bars indicate mean and s.d., ns non significant, ${ }^{* *} \mathrm{p}<0.01{ }^{* * *} \mathrm{p}<0.001$.

Table S1. Raw data of the enhancer screen for let-502 at $23^{\circ} \mathrm{C}$.
The 237 genes were selected on Wormbase, mostly for microtubule-related and transport-related processes. In addition, some genes were used as controls (asterisks, include some house-keeping genes), for which the RNAi depletion was supposed to induce a strong phenotype. Emb, early Embryonic lethality, Bmd, Body Morphological Defects. Screen hits were considered as positive when Bmd \% reached at least 30\%. The hits presented in Fig. 7 and Table 1 were further validated.

Gene name	Known ortholog	RNAi phenotype in wildtype	RNAi phenotype let502(sb118ts) at $23^{\circ} \mathrm{C}$
L4440 empty vector *		WT	WT
dhc-1 / T21E12.4	Dynein heavy chain	WT	5\% Emb; 5\% Bmd
klp-15 / M01E11.6	Kinesin family member 15	30\% Emb	40\% Emb; 10\% Bmd
kca-1 / C10H11.10	Kinesin cargo adaptor	WT	10\% Bmd
pfd-6 / T21E12.4	Prefoldin 6 subunit	WT	10\% Bmd
mei-2 / F57B10.12	p80 subunit of katanin	60-70\% Emb	70-80\% Emb
che-3 / F18C12.1	dynein heavy chain 1 b isoform	WT	WT
mei-1 / T01G9.5	catalytic subunit of katanin	30-40\% Emb	60\% Emb
klp-16 / C41G7.2	Motor kinesin Kar3/Ncd	30\% Emb	10\% Emb
dlc-6 / Y106G6G. 3	Dynein light chain/ DYNLL1\&2	WT	10\%Emb
pfd-3 / T06G6.9	Prefoldin / VBP1	40\% Emb	20\% Emb + 40\% Bmd
F32A7.5	MAP 1	WT	WT
pes-7 / F09C3.1	IQGAP	WT	WT
rsa-1 / C25A1.9	PP2A regulatory subunit B" class	5\% Emb	5\% Emb + 40\% Bmd
vab-10 / ZK1151.1*	Spectraplakin / BPAG1	100\%Bmd+dead mothers	Dead mothers
vab-19 / T22D2.1	Ankyrin / Kank	WT	5\% Emb; 5\% Bmd
pfd-2 / H20J04.5	Prefoldin / PFDN2	5\% Emb	5\% Emb + 50\% Bmd
klp-3 / T09A5.2	Motor kinesin Kar3/Ncd	WT	10\% Emb + 10\% Bmd
farl-11 / F10E7.8	FAM40A/FAM40B	WT	30-40\% Bmd
cct-1 / T05C12.7	Chaperonin/ TCP1	50\% Emb; low progeny	70\% Bmd
cct-4 / K01C8.10	T complex chaperonin/ CCT4	30-40\% Emb	10\% Emb + 30\% Bmd
zyg-9 / F22B5.7	XMAP215/Dis1 family MAP	95\% Emb	90\%Emb +5-10\%Bmd
cct-2 / T21B10.7	T complex chaperonin/ CCT2	30\% Emb	20\% Emb + 30\% Bmd
ebp-2 / VW02B12L. 3	EB-type microtubule binding	WT	5\% Bmd
klp-17 / W02B12.7	Motor kinesin Kar3/Ncd	WT	20\% Emb
W07G1.1	Doublecortin domaincontaining 2 / DCDC 2	WT	WT
W07G1.5	DCDC 2	WT	WT
tac-1 / Y54E2A. 3	TACC1	50-60\% Emb	50\% Emb+ 10\% Bmd
cct-3 / T21B10.7	T complex chaperonin/ ССТ3	30\% Emb; low progeny	50\% Bmd
F54A3.2	XMAP215/Dis1 family MAP	WT	10\% Emb
klp-1/ unc-104/ C52E12.2	Kinesin-like motor / ATSV	WT	10\% Emb
ect-2/ T19E10.1	RhoGEF/ Pebble	80\% Emb	80\% Emb
let-805/ H19M22.2*	myotactin	100\% Bmd	95\% Bmd
cct-5 / C07G2.3	T complex chaperonin/ CCT5	30\% Emb	30\% Bmd
klp-6 / R144.1	Monomeric kinesin KIF14	WT	40\% Bmd
cct-6 / F01F1.8	T complex chaperonin/ CCT6A	20-30\% Emb	50-60\% Bmd
pfd-5 / R151.9	Prefoldin / PFDN5	20\% Emb	10\% Emb + 40\% Bmd
dlc-1 / T26A5.9	Dynein light chain/ DYNLL1\&2	WT	20\%Emb + 10\% Bmd

cls-1 / C07H6.3	CLASP	WT	10\% Emb
cls-2 / R107.6	CLASP	10\% Emb	20\% Bmd
cls-3 / C07H6.3	CLASP	WT	10\% Emb
unc-116/ khc-1/ R05D3.7	Kinesin heavy chain	10\% Emb	10\% Emb
ank-1/ PAR2.3	Catalytic subunit AMPK	WT	20\% Emb
klp-7/ K11D9.1	XKCM1/MCAK kinesin	30-40\% Emb	40\% Emb + 20\% Bmd
dhc-4/ W05B2.4	Dynein heavy chain	WT	5-10\% Bmd
sup-35/ Y48A6C. 3	RMND1 (Human regulator of microtubule dynamics 1)	WT	20\% Emb + 20\% Bmd
arf-6/ Y116A8C. 12	ARF6 GTPase	WT	WT
klp-19/ Y43F4B. 6	plus-end MT motor Kinesin-4	10\% Emb	20-30\% Bmd
lis-1/ T03F6.5	LIS1 (MAP)	20\% Emb	50\% Emb + 20\% Bmd
zyg-8/ Y79H2A. 11	DCX doublecortin	WT	WT
let-502*/ C10H11.9	ROCK Rho kinase	80\% Bmd	100\% Bmd
pig-1/ W03G1.6	MELK	WT	20\% Bmd
bicd-1/ C43G2.2	Bicaudal-C	WT	WT
egal-1/ C10G6. 1	EXD1	WT	10\% Bmd
unc-44/ B0350.2	Ankyrin	10\% Emb	60\% Bmd
dyci-1/C17H12.1	Dynein intermediate chain	80-90\% Emb	80-90\% Emb
klp-10/C33H5.4	KIF15 kinesin-like	30\% Emb	40\% Emb + 30\% Bmd
klp-18/C06G3.2	KIF15 kinesin-like	WT	20\% Bmd
tbce-1/ K07H8.1	TBCEL tubulin cofactor E	WT	30\% Bmd
klp-11/F20C5.2	Kinesin II	WT	10\% Bmd
dnc-1/ZK593.5	P150 dynactin	80-90\% Emb	90\% Emb
klc-1/M7.2	Kinesin light chain	WT	WT
pfd-1/C08F8.1	Prefoldin / PFDN1	30\% Emb	30\% Emb + 30\% Bmd
pfd-4/B0035.4	Prefoldin / PFDN4	WT	30\% Emb + 20\% Bmd
klp-12/T01G1.1	KIF21B Kinesin	WT	10\% Bmd
dlc-2 / M18.2	Dynein light chain/ DYNLL1\&2	Ste	Ste
dil-1/C39E9.14	Dynein light intermediate chain	70\% Emb	60\% Emb + 10\% Bmd
eps-8/ Y57G11C. 24	EPS8	WT	30\% Bmd
cct-8/ Y55F3AR. 3	Chaperonin CCT8	WT	30\% Bmd
cct-7/ T10B5.5	Chaperonin CCT7	50\% Emb	50\% Bmd + 40\% Bmd
spas-1/C24B5.2	spastin	WT	20\% Bmd
noca-1/ T09E8.1	ninein	WT	40\% Bmd
par-1/H39E23.1	MARK1/ Par 1	50\% Emb	60-70\% Emb
R10D12.10	Tau-tubulin kinase 1	WT	30\% Bmd
F14H3.12	MARK1/ Par-1	WT	20\% Bmd
ebp-1/Y59A8B. 7	EB1	WT	30\% Bmd
eel-1/Y67D8C. ${ }^{\text {* }}$	Hect domain E3 ligase	WT	20\% Bmd
klp-2/osm-3/M02B7.3	Kinesin-like KIF17	WT	20\% Bmd
klp-5/vab-8/K12F2.2	Kinesin-like KIF26B	WT	10-20\% Bmd
kin-29/ F58H12.1	Serine threonine kinase SIK3	WT	30-40\% Bmd
coel-1/C52B9.3	Tubulin-specific cofactor E	WT	WT
klp-8/C15C7.2	Kinesin-like	WT	10-20\% Bmd
klp-4/F56E3.3	Kinesin-like KIF13A	20\%Emb + 20\% Bmd	10-20\% Bmd
klp-13/F22F4.3	Kinesin-like KIF19	WT	10\% Bmd
sad-1/ F58H12.1	serine threonine kinase BRSK2	WT	10\% Bmd
aak-2/ T01C8.1	Catalytic subunit AMPK	WT	10\% Bmd
C27C12.1	CLASP2	WT	WT
pqn-34/ptrn-1/F35B3.5	patronin	WT	10\% Bmd
T08D2.8	Mini spindles	WT	10-20\% Bmd WT
ani-1/Y49E10.19	Anillin	10\% Emb	did not grow
$\begin{aligned} & \text { cogc-1/mig-30/ } \\ & \text { Y54E10A.2 } \end{aligned}$	Golgi complex subunit 1	WT	WT
cogc-3/mig-29/	Golgi complex subunit 3	WT	WT

Y71F9AM. 4			
rabx-5/ Y39A1A. 5	Rab5 GEF	WT	10\% Bmd
csn-5/ B0547.1	COP9 signalosome CSN5	WT	20\% Bmd
lam-1*/ W03F8.5	laminin beta	100\% Emb + low prog.	50\% Emb + 50\% Bmd
cogc-2/ C06G3.10	Golgi complex subunit 2	WT	WT
ima-3/ F32E10.4	importin alpha	20\% Emb	40\% Bmd
zen-4/ klp-9/ M03D4.1	Kinesin-like KIF23	100\% Emb	100\% Emb
prkl-1/ ZK381.5	Prickle	WT	WT
arf-3/ F57H12.1	ARF5	sterile mothers	sterile mothers
vha-17/ F49C12.13	V-ATPase subunit	WT	WT
col-2/ W01B6.7	collagen	WT	WT
his-48/ B0035.8	H2B histone	100\% Emb	60\% Emb + 20\% Bmd
par-5/ftt-1/ M117.2	14-3-3 protein	60\% Emb	60\% Emb
sec-24.2/ ZC518.2	SEC24B	30\% Emb	40\% Emb
gex-3/ F28D1.10	NCKAP1/ Kette	WT	30-40\% Bmd
mbk-2/ F49E11.1	Minibrain/ DYRK2 kinase	WT	30\% Bmd
let-99/ K08E7.3	DEP domain	70\% Emb + 10\% Bmd	30\% Emb + 10\% Bmd
sas-6/ Y45F10D. 9	Hs-SAS-6	60\% Emb	50\% Emb
csn-4/ Y55F3AM. 15	COP9 signalosome CSN4	WT	WT
vps-18/W06B4.3	VPS18	WT	WT
ral-1/ Y53G8AR. 3	Ras-related Ral-A	did not grow	did not grow
rab-1/ C39F7.4	Ras-related Rab-1A	sterile mothers	sterile mothers
gad-1/ T05H4.14	WD-repeat protein 70	WT	WT
aps-1/ F29G9.3	AP-1 sigma 2 subunit	low progeny, sick mother	90\% late Emb, low progeny
vps-37/ CD4.4	Vps-37B ESCRT-I complex	WT	20\% Bmd
rga-3/ K09H11.3	Rho GAP	20-30\% Emb	20\% Bmd
air-1/ K07C11.2	Aurora-A kinase	90\% Emb	60\% Emb
C13F10.2	KXD1 domain (cargo sorting)	WT	WT
rbx-1/ZK287.5	E3 ligase RBX1	90\% Emb	90\% Emb
sas-5/ F35B12.5	coiled coil (centriole assembly)	90\% Emb	60\% Emb+ 10\% Bmd
sun-1/ F57B1.2	SUN domain	40\% Emb + 10\% Bmd	40\% Emb + 10\% Bmd
atn-1/ W04D2.1	alpha-actinin	WT	WT
vps-54/ T21C9.2	Vps54p GARP complex	WT	10\% Bmd
vps-33.1/ B0303.9	VPS33A	WT	WT
vps-33.2/ C56C10.1	VPS33A	WT	WT
vps-11/ R06F6.2	VPS11	50\% Emb + 10\% Bmd	50\% Emb + 10-20\% Bmd
vps-52/ F08C6.3	Vps52p GARP complex	WT	20-30\% Emb
sec-10/ C33H5.9	EXOC5 exocyst complex	40\% Emb	20\% Emb
lam-2*/ C54D1.5	laminin gamma	sterile mothers	90\%-100\% Bmd
sec-15/ C28G1.3	EXOC6 exocyst complex	WT	WT
sdpn-1/ F45E1.7	syndapin	WT	WT
rab-8/ D1037.4	Rab-8b GTPase	WT	WT
rab-6.1/ F59B2.7	Rab-6 GTPase	WT	WT
rab-7/ W03C9.3	Rab7 GTPase	60\% Emb	50\% Emb + 20\% Bmd
rab-10/ T23H2.5	Ras-related Rab10	WT	WT
sep-1/ Y47G6A. 12	separase	90\% Emb	50\% Emb $+10 \%$ Bmd
unc-37/ W02D3.9	tran-1sducin-like Groucho	70\% Bmd + 30\% Emb	80\% Bmd + 20\% Emb
csc-1/ Y48E1B. 12	aurora B complex member	WT	WT
mlc-4/ C56G7.1*	myosin light chain	sterile mothers	sterile mothers
pak-1/C09B8.7 *	PAK1	WT	90\%-100\% Bmd
dnc-2/ C28H8.12	p50/ dynamitin/ DCTN2	30\% Emb	30\% Emb + 20\% Bmd
dnc-4/ C26B2.1	p62/ dynactin/ DNTN2	WT	WT
rab-27/ aex-6/ Y87G2A. 4	RAB27B	WT	WT
csn-2/ B0025.2	COP9 signalosome COPS2	WT	40\% Bmd
sur-6/ F26E4.1	PP2A regulatory B subunit	20\% Emb	20\% Emb + 70\% Bmd
cul-2/ ZK520.4	cullin-2	100\% Emb	80\% Emb
vps-28/ Y87G2A. 10	VPS28	WT	30\% Emb + 30\% Bmd
spn-4/ ZC404.8	RNA-binding protein	did not grow	did not grow

arf-1/ B0336.2	ARF1 GTPase	10\% late Emb	50\% late Emb
arx-1/ Y71F9AL. 16	ARP3	20-30\% Emb	30\% Emb + 30\% Bmd
csn-6/ Y67H2A. 6	COP9 signalosome COPS6	WT	20\% Bmd
$\begin{aligned} & \text { rab-35/rme-5/ } \\ & \text { Y47D3A. } 25 \end{aligned}$	Rab35 GTPase	WT	WT
syx-5/ syn-3/ F55A11.2	syntaxin 5	molting problems, 10\% Emb	70\% Bmd
sec-8/ Y106G6H. 7	exocyst complex SEC8	WT	10\% Bmd
vps-4/ Y34D9A. 10	VPS4B	WT	WT
tpxl-1/ Y39G10AR. 12	TPX2	60\% Emb	30\% Emb + 20\% Bmd
vha-5/ F35H10.4	V0 subunit ATPase	WT	WT
$\begin{aligned} & \text { rab-2/ unc-108/ } \\ & \text { F53F10.4 } \\ & \hline \end{aligned}$	Rab2A	WT	WT
rab-8/ D1037.4	Rab8B	WT	WT
rab-39/ D2013.1	Rab39B	WT	WT
lgg-1/ C32D5.9	GABARAP	WT	20\% Bmd
spdl-1/ C06A8.5	spindle pole body component	WT	5\% Bmd
vps-32.1/ C56C10.3	CHMP4A	40\% Emb	30\% Emb + 10-20\% Bmd
lin-5/ T09A5.10	novel protein	40\% Emb	50\% Emb + 10+ Bmd
air-2/B0207.4	Aurora kinase A	90\% Emb + 10\% Bmd	60\% Bmd + 20\% Bmd
rab-21/ T01B7.3	Rab21	WT	WT
vps-51/ B0414.8	Vps51p GARP complex	WT	WT
rab-11.1/F53G12.1	Rab-11A	95\% Emb	sterile mothers
rab-8/ D1037.4	Rab-8B	WT	WT
noah-1/ C34G6.6	NompA	sterile mothers	sterile mothers
spd-5/ F56A3.4	EEA1	100\% Emb	80\% Emb
kca-1/ C10H11.10	kinesin cargo adapter	50\% Emb	30\% Emb
cye-1/ evl-10/ C37A2.4	cyclin E	60\% Emb+ 20\% Bmd	50\% Emb + 50\% Bmd
efa-6/Y55D9A. 1	Arf GEF	WT	WT
evl-20/arl-2/ F22B5.1	ARL2	80\% Emb	40\% Emb + 40\% Bmd
rab-10/ T23H2.5	Rab-10	WT	20\% Emb
bub-1/ R06C7.8	BUB1	50\% Emb	30\% Emb
inx-14/ F07A5.1	innexin	40\% Emb	40\% Emb
ran-4/ R05D11.3	NTF2	60\% Emb	60\% Emb
rba-1/ K07A1.11	RBP4	95\% Emb	40\% Emb + 40\% Bmd
mel-26/ZK858.4	MATH \& BTB/POZ domain	100\% Emb	90\% Emb
rab-5/ F26H9.6	Rab5	60\% Emb	60\% Emb
spd-2/ F32H2.3	coiled coil	WT	WT
apr-1/K04G2.8	APC	WT	WT
tlf-1/ F39H11.2	TBP-like Factor 1	60\% Emb	50\% Emb + 50\% Bmd
tbcd-1/ F16D3.4	beta-tubulin cofactor D	50\% Emb	30\% Emb
sys-1/ T23D8.9	novel protein	60\% Emb + 20\% Bmd	40\% Emb + 30\% Bmd
cdc-26/B0511.9	APC/C component	40\% Emb	40\% Emb + 30\% Bmd
car-1/Y18D10A. 17	LSM14	95\% Emb	70\% Emb
tba-2/ C47B2.3	alpha-tubulin	100\% Emb	100\% Emb
agef-1/ Y6B3A. 1	ARFGEF1	40\% Emb	40\% Emb + 20\% Bmd
par-6/ T26E3.3	Par-6	60\% Emb	60\% Emb
apg-1/ Y105E8A. 9	AP-1 γ subunit	20\% Emb + low progeny	40\% Emb
vps-4/Y34D9A. 10	VPS4	did not grow	did not grow
zyg-11/ C08B11.1	ZYG11	30\% Emb	20\% Emb
dyrb-11/ T24H10.6	dynein light chain Roadblock 1	WT	WT
ran-3/ C26D10.1	RCC1	80\% Emb	40\% Emb + 30\% Bmd
mel-11/ C06C3.1	myosin phosphatase	70\% Emb	60\% Emb
tba-4/ F44F4.11	alpha-tubulin	20\% Emb	30\% Emb + 10\% Bmd
Y19D2B. 1	alpha-tubulin	WT	WT
die-1/ C18D1.1	C2-H2 zinc finger	80\% Emb + 20\% Bmd	30\% Emb + 70\% Bmd
ooc-3/ B0334.11	nematode-specific RasGAP	30\% Emb	20\% Emb
arp-1/ Y53F4B. 22	centractin	30\% Emb	20\% Emb + 40\% Bmd
gip-1/ CeGRIP/H04J21.3	γ-tubulin ring complex	10\% Emb	40\% Emb

ben-1/ tbb-5/ C54C6.2	beta tubulin	10\% Emb	30\% Emb
par-2/ F58B6.3	RING finger PAR2	80\% Emb	50\% Emb + 20\% Bmd
paa-1/ F48E8.5	PP2A structural subunit	90\% Emb	10\% Emb + 40\% Bmd
dcn-1/ H38K22.2	DCN-1-like protein 1	70\% Emb	60\% Emb
par-3/ F54E7.3	Par3/ Bazooka	30\% Emb	30\% Emb + 30\% Bmd
rabn-5/ F01F1.4	Rabaptin 5	WT	20\% Bmd
exos-9/ F37C12.13	EXOSC9/ RRP45	WT	40\% Bmd
vps-2/ Y46G5A. 12	CHMP2A	WT	30-40\% Bmd
apc-2/ K06H7.6	APC 2	50\% Emb	20\% Emb + 20\% Bmd
nmy-2/ F20G4.3 *	non-muscle myosin II	40\% Emb + 10\% Bmd	40\% Emb + 50\% Bmd
vps-16/ C05D11.2	VPS16	30\% Emb	30\% Emb
kap-1/ F08F8.3	kinesin-associated protein	WT	WT
cyk-1/ F11H8.4	diaphanous/ DIAPH1	WT	WT
sas-4/ F10E9.8	CPAP	50\% Emb	30\% Emb + 20\% Bmd
ran-1/ K01G5.4	Ran GTP	dead mothers	dead mothers
tbb-1/ K01G5.7	beta-tubulin	100\% Emb	80\%Emb + 10\% Bmd
gpr-2/ C38C10.4	GPR	WT	WT
vha-14/ F55H2.2	D subunit of V-ATPase	WT	WT
chc-1/ T20G5.1	clathrin heavy chain	100\% Emb	70\% Emb
pod-1/ Y76A2B. 1	coronin-7	40\% Emb	50\% Emb
unc-32/ ZK637.8	subunit of V-ATPase	80\% Emb	60\% Emb + 40\% Bmd
rmd-1/ T05G5.7	RMDN1	WT	WT
tsg-101/ C09G12.9	Vps23P/ TSG101	WT	WT
mup-4*/ ZK1151.1	novel transmembrane	40\% L1 larval lethal	80\% L1 larval lethal
gei-4/ W07B3.2	waek homol. to trichohyalin	50\% Emb	80\% Emb + 10\% Bmd
ptc-1/ ZK675.1	Patched	WT	WT
rga-2/ Y53C10A. 4	RhoGAP	40\% Emb	20\% Emb
lam-2/ C54D1.5	laminin gamma subunit	sterile mothers, few Bmd	90\% Bmd
ifb-1/ F10C1.2	intermediate filament B	WT	WT
rpl-21 */ C14B9.7	ribosomal protein L21	low progeny + Emb	low progeny + Emb
rnr-2*/ C03C10.3	ribonucleotide reductase	80\% Emb	70\% Emb
lst-3*/ Y37A1B. 1	CCAR1	dead mothers	dead mothers

Table S2. Strains used in this study

Strain	Genotype
N2	Wild-type
EG6699	ttTi5605 II ; unc-119(ed3) III; oxEx1578
0D761	7 times outcrossed let-502(sb118ts)
ML752	4 times outcrossed mcIs35 [lin-26p::GFP::TBA-2; pat-4::CFP, rol-6(su1006)]
ML1652	4 times outcrossed mcIs46 [pCL08 dlg-1p::DLG-1::RFP, Cb-unc-119(+)] described in (Diogon et al., 2007)
ML1720	mcIs35; mcIs46
ML1649	mcSi53[pML457 dpy-7p::EBP-2::GFP, Cb-unc-119(+)] II
ML1654	mcSi53; mcIs46
ML1658	let-502(sb118ts); mcSi53; mcIs46
ML1840	let-502(sb118ts); mcIs46
OD523	3 times outcrossed ltSi63 [p0D1111 CEOP3608 TBG-1::GFP, Cb-unc-119(+)] II
0D2509	gip-2(lt19[gip-2::GFP]::loxP::Cb unc-119(+)::IoxP)) I; unc-119(ed3) III
OD952	ItSi246[p0D1270; noca-1p::noca-1abcfgh-superfolderGFP; Cb-unc-119(+)]II; unc-119(ed3)III
ML2282	mcIs54 [pML497 dpy-7p::SPAS-1_IRES_NLSmCherry, Cb-unc-119(+)] X
ML1968	ltSi246; mcIs54 X
ML2552	ltSi63; mcIs54 X
ML2554	gip-2(lt19) I; mcls54 X
ML1896	mcIs35; mcIs54
ML1931	let-502(sb118ts); mcls54
ML1765	mcIs35; mcEx574 [pML477 elt-3p::SPAS-1_IRES_mCherry; myo-2p::GFP]
ML1772	let-502(sb118ts) I; mcIs35; mcEx574
ML1766	mcIs35; mcEx575 [pML479 lin-26p::SPAS-1_IRES_mCherry; myo-2p::GFP]
ML1771	let-502(sb118ts) I; mcIs35; mcEx575
ML1768	mcIs35; mcIs46; mcEx576 [pML485 ceh-16p::SPAS-1_IRES_mCherry; myo$2 p:: G F P]$
ML1769	mcIs35; mcIs46; mcEx602 [pML485 ceh-16p::SPAS-1_IRES_mCherry; myo2p::GFP]
ML1770	mcls35; mcIs46; mcEx603 [pML485 ceh-16p::SPAS-1_IRES_mCherry; myo2p::GFP]
ML1802	let-502(sb118ts) I; mcIs35; mcIs 46; mcEx603
ML1804	let-502(sb118ts) I; mcIs35; mcIs 46; mcEx576
ML1805	let-502(sb118ts) I; mcIs35; mcIs 46; mcEx602
ML1886	mcIs35; mcEx634 [pML472 hsp::SPAS-1_IRES_mCherry; myo-2p::GFP]
ML1824	mcIs35; mcEx606 [pML494 dpy-7p::SPAS-1A_IRES_NLSmCherry; myo2p::GFP]
OD723	6 times outcrossed noca-1(ok3692)V/nT1[qIs51] (IV;V)
OD726	6 times outcrossed ltSi77[pOD1112; lbp-1p::mCherry; Cb-unc-119 +)]V
OD739	ItSi173[pOD1114; noca-1p::noca-1gh; Cb-unc-119(+)] II; unc-119(ed3)III; noca-1(ok3692)V
OD758	ItSi182[p0D1237; noca-1p::noca-1abcfgh; Cb-unc-119(+)]II; unc-119(ed3) III; noca-1(ok3692) V
OD844	let-502(sb118ts)I; ltSi77[p0D1112; lbp-1p::mCherry; Cb-unc-119(+)]V

0 D 46	let-502(sb118ts)I; noca-1(ok3692)V/nT1[qIs51](IV;V)
0D907	ltSi222[pOD1250/pSW078; Plbp-1::GFP-tbb-2-operon-linker-mCherry-his-11; cb-unc-119(+)]I; noca-1(ok3692)V/nT1[qIs51](IV;V)
OD909	ltSi222[pOD1250/pSW078; Plbp-1::GFP-tbb-2-operon-linker-mCherry-his-11; cb-unc-119(+)]I; ItSi77[pOD1112/pSW032; Plbp-1::mCherry; cb-unc119(+)]V
OD998	ltSi246[p0D1270; noca-1p::noca-1abcfgh-superfolderGFP; Cb-unc-119(+)]II; noca-1(ok3692)V
OD1252	let-502(sb118ts)I; ItSi173[p0D1114; noca-1p::noca-1gh; Cb-unc-119(+)]II; noca-1(ok3692)V
OD1253	let-502(sb118ts)I; ItSi182[pOD1237; noca-1p::noca-1abcfgh; Cb-unc119(+)]II; noca-1(ok3692)V
OD1580	ItSi518[pOD1338; noca-1p::noca-1acfgh(STOP codon in the first exon of isoform b); Cb-unc-119(+)]II; unc-119(ed3)III; noca-1(ok3692)V
OD2422	let-502(sb118ts)I; ltSi518[pOD1338; noca-1p::noca-1acfgh(STOP codon in the first exon of isoform b); Cb unc-119(+)]II; unc-119(ed3)III; noca1(ok3692)V
ML1617	4 times outcrossed xnIs97 [pJN455(hmr-1p::HMR-1::GFP); Cb unc-119(+)] III, gift from J. Nance lab (Achilleos et al., 2010)
ML1899	xnIs97 III ; mcIs54/+ X
ML1913	let-502(sb118ts) I; xnIs97 III
ML1915	let-502(sb118ts) I; xnIs97 III; mcIs54/+ X
ML2100	let-502(sb118ts) I; xnIs97 III; rde-1(ne219) V; ksIs9 [lin-26p::RDE-1, rol6(su1006), lin-26p::NLS-GFP]
ML1861	let-502(sb118ts) I; mcIs54/+ X; mcEx553 [pML1533 ceh-16p::GFP::MLC4DD; myo-2p::GFP]
ML1862	let-502(sb118ts) I; mcIs54/+ X; mcEx555 [pML1523 mlc-4p::GFP::MLC-4DD; myo-2p::GFP]
ML1867	let-502(sb118ts) I; mcIs54 X; mcEx554 [pML1539 elt-3p::GFP::MLC-4DD; myo-2p::GFP
ML1312	mcIs 49[mlc-4p::GFP::MLC-4, pie-1p::GFP::MLC-4, pRF4]
ML2493	mcIs 49; mcls54 X
ML2376	syx-5(mc51)/oxTi711 [eft-3p::Td-tomato:::H2B, Cb unc-119(+)] V
ML2379	let-502(sb118ts) I; syx-5(mc51)/oxTi711 V
ML2424	xnIs97 III ; syx-5(mc51)/oxTi711 V
ML2423	let-502(sb118ts) I; xnIs97 III; syx-5(mc51)/oxTi711 V
ML2490	syx-5(mc51)/oxTi711 V ; mcls54 X
ML2324	N2; mcEx871 [dpy-7p::GFP::SYX-5; myo-2p::mCherry]

