A B

D

G

$$
7
$$

E

H

I

Figure S1. Schematic representation of mating schemes and CTNNB1 protein pools in oocytes and progeny blastocysts used in this work.

CTNNB1 protein is depicted as rectangle with an N - (green) and C-terminal (yellow) portion. Paternally encoded protein is boxed blue, maternal encoded protein is boxed in red. The β CatC allele deletion results in complete removal of the CTNNB 1 protein (illustrated as semi-transparent squares), while β CatN allele deletion results in a C-terminal CTNNB1 fragment (C-terminal (yellow) square). Zp3cre recombines
floxed alleles in the maternal germline. The content of rounded rectangles beneath the mothers in each cross depict the maternal protein contribution to the embryo through the oocyte. The content of the rounded rectangles beneath the F1 generation depict the CTNNB1 protein pool at the 3.5 dpc blastocyst stage. For simplicity sake display of ZP3cre inheritance is omitted as irrelevant to the resultant embryos. Progeny labeled with $\left({ }^{*}\right)$ received only half of the wild type maternal protein contribution at fertilization.

[^0]Figure S2. Comparison of the wild type and truncated protein products produced by the Ctnnb1 (wt),

Ctnnb1 $1^{\text {tm2Kem }}(\mathrm{Kem})$ and Ctnnb1 ${ }^{\text {tm4Wbm }}$ (Bir and Bir2) alleles.

Analysis of the sequences of the different alleles revealed that the Ctnnb1 $1^{\text {tm2Kem }}$ allele has one possible fragmented product produced from a alternative translation start site, whereas the Ctnnb $1^{\mathrm{tm} 4 \mathrm{Wbm}}$ allele has two possible products. Western blot analysis (Fig 1 C) shows that the fragment, a splice product of exons 1 to exon 8, Bir2, gives rise to the truncated CTNNB1 $1^{\mathrm{tm} 4 \mathrm{Wbm}}$.

Figure S3. Schematic representation of the β-catenin floxed allele designed to remove the \mathbf{C}-terminal portion of the protein (β CatC).

Floxed sites are indicated by blue arrowheads and frt sites by green arrowheads. Grey arrows indicate the position of the primer pairs used to determine correct recombination of the 5^{\prime}, arm of the construct. Black arrows indicate the position of the primer pairs used to determine correct recombination of the 3^{\prime} arm of the construct. Patterned arrows indicate the primer pair used to determine whether or not the 5 ' loxP site was intact.

Figure S4. 4.5 dpc blastocysts derived from maternal-zygotic $\boldsymbol{\beta}$-catenin null females.
CTNNB1 and OCT4 expression analysis in $\beta \operatorname{Cat}^{\text {mat } \Delta / \Delta}(\mathrm{A})$ and $\beta \operatorname{CatC}^{\text {mat } / /+}(\mathrm{B})$ implanting embryos. At 4.5 dpc mutant ICMs remain OCT4 positive (green arrowhead). PE cells are also OCT4 positive and well visible in mutant and control (white arrowhead).

Figure S5. Representative images of litters isolated from maternal-zygotic $\boldsymbol{\beta}$-catenin null females at 3.5 dpc (A, C-E) Representative 3.5 dpc litters of $\beta \mathrm{CatC}^{\mathrm{f} / \mathrm{f}}: Z p 3$-cre female mated with a $\beta \mathrm{Cat}^{\mathrm{mat} \Delta /+}$ male. (A) Litter containing presumably normal blastocysts, uncompacted morulae without a zona pellucida, and numerous trophoblastic vesicles. (B) Higher magnification of trophoblastic vesicles of litter shown in (A) (C-E) Litters containing normal blastocysts, compacted and uncompacted morulae with and without zona pellueidae. (F) Representative litter at 3.5 dpc of a $\beta \mathrm{CatN}^{\mathrm{f}} / \beta \mathrm{CatC}^{\mathrm{f}}: Z p 3$-cre female mated with a $\beta \mathrm{CatC}^{\mathrm{mat} \Delta /+}$ male. Litter contains normal and abnormal blastocysts, uncompacted morulae without zonas and several trophoblastic vesicles.

[^0]: WT MATQADLMELDMAMEPDRKAAVSHWQQQSYLDSGIHSGATTTAPSLSGKGNPEEEDVDTSQVLYEWE
 Kem

 Bir2
 QGFSQSFTQEQVADIDGQYAMTRAQRVRAAMFPETLDEGMQIPSTQFDAAHPTNVQRLAEPSQMLKH

 Bir2

 AVVNLINYQDDAELATRAIPELTKLLLNDEDQVVVNKAAVMVHOLSKKEASRHAIMRSPQMVSAIVRT
 Kem
 Bir

 M MONTNDVETARCTAGTLHNLSHHREGLLAIFKSGGIPALVKMLGSPVDSVLFYAITTLHNLLLHOEG
 Kem
 Bir
 Bir2
 T AKMAVRLAGGLQKMVALLNKTNVKFLAITTDCLQILAYGNOESKLIILASGGPQALVVNIMRTYTYEK

 LLWTTSRVLKVLSVCSSNKPAIVEAGGMQALGLHLTDPSQRLVQNCLWTLRNLSDAATKQEGMEGLL
 Kem LLWTTSRVLKVLSVCSSNKPAIVEAGGMQALGLHLTDPSQRLVQNCLWTLRNLSDAATKQEGMEGLL
 Bir LLWTTSRVLKVLSVCSSNKPPAIVEAGGMQALGLHLTDPSQRLVQNCLWTLRNLSDAATKQEGMEGLL -----------------MATQGGMQALGLHLTDPSQRLVQNCLWTLRNLSDAATKQEGMEGLL

 WT GTLVQLLGSDDINVVTCAAGILSNLTCNNYKNKMMVCQVGGIEALVRTVLRAGDREDITEPAICALR Kem GTLVQLLGSDDINVVTCAAGILSNLTCNNYKNKMMVCQVGGIEALVRTVLRAGDREDITEPAICALR Bir GTLVQLLGSDDINVVTCAAGILSNLTCNNYKNKMMVCQVGGIEALVRTVLRAGDREDITEPAICALR Bir2 GTLVQLLGSDDINVVTCAAGILSNLTCNNYKNKMMVCQVGGIEALVRTVLRAGDREDITEPAICALR

 WT HLTSRHQEAEMAQNAVRLHYGLPVVVKLLHPPSHWPLIKATVGLIRNLALCPANHAPLREQGAIPRL
 Kem HLTSRHQEAEMAQNAVRLHYGLPVVVVKLLHPPSHWPLIKATVGLIRNLALCPANHAPLREQGAIPRL
 Bir HLTSRHQEAEMAQNAVRLHYGLPVVVKLLHPPSHWPLIKATVGLIRNLALCPANHAPLREQGAIPRL
 Bir2 HLTSRHQEAEMAQNAVRLHYGLPVVVKLLHPPSHWPLIKATVGLIRNLALCPANHAPLREQGAIPRL
 WT VQLLVRAHQDTQRRTSMGGTQQQFVEGVRMEEIVEGCTGALHILARDVHNRIVIRGLNTIPLFVQLL
 Kem VQLLVRAHQDTQRRTSMGGTQQQFVEGVRMEEIVEGCTGALHILARDVHNRIVIRGLNTIPLFVQLL
 Bir VQLLVRAHQDTQRRTSMGGTQQQFVEGVRMEEIVEGCTGALHILARDVHNRIVIRGLNTIPLFVQLL Bir2 VQLLVRAHQDTQRRTSMGGTQQQFVEGVRMEEIVEGCTGALHILARDVHNRIVIRGLNTIPLFVQLL

 WT YSPIENIQRVAAGVLCELAQDKEAAEAIEAEGATAPLTELLHSRNEGVATYAAAVLFRMSEDKPQDY
 Kem YSPIENIQRVAAGVLCELAQDKEAAEAIEAEGATAPLTELLHSRNEGVATYAAAVLFRMSEDKPQDY
 Bir YSPIENIQRVAAGVLCELAQDKEAAEAIEAEGATAPLTELLHSRNEGVATYAAAVLFRMSEDKPQDY
 Bir2 YSPIENIQRVAAGVLCELAQDKEAAEAIEAEGATAPLTELLHSRNEGVATYAAAVLFRMSEDKPQDY
 WT KKRLSVELTSSLFRTEPMAWNETADLGLDIGAQGEALGYRQDDPSYRSFHSGGYGQDALGMDPMMEH
 Kem KKRLSVELTSSLFRTEPMAWNETADLGLDIGAQGEALGYRQDDPSYRSFHSGGYGQDALGMDPMMEH
 Bir KKRLSVELTSSLFRTEPMAWNETADLGLDIGAQGEALGYRQDDPSYRSFHSGGYGQDALGMDPMMEH
 Bir2 KKRLSVELTSSLFRTEPMAWNETADLGLDIGAQGEALGYRQDDPSYRSFHSGGYGQDALGMDPMMEH
 WT EMGGHHPGADYPVDGLPDLGHAQDLMDGLPPGDSNOLAWFDTDL
 Kem EMGGHHPGADYPVDGLPDLGHAQDLMDGLPPGDSNQLAWFDTDL
 Bir EMGGHHPGADYPVDGLPDLGHAQDLMDGLPPGDSNQLAWFDTDL
 Bir2 EMGGHHPGADYPVDGLPDLGHAQDLMDGLPPGDSNQLAWFDTDL

