SUPPLEMENTARY MATERIALS AND METHODS

Clonal analysis

For clonal analysis the plants were grown in the same conditions as those used for the growth curve. Following heat shock treatment (see below), plants were returned to the growth room and left for 4,6 or 8 days before imaging. The gynoecia were imaged in water using a Leica DM6000 compound microscope, a Zeiss LSM 5 EXCITER Laser Scanning Confocal Microscope, or the Zeiss LSM 780 Laser Scanning Confocal microscope.

Clones of the Capsella and Arabidopsis fruit were analysed using Sector Analysis Toolbox implemented in MATLAB (http://www.uea.ac.uk/cmp/research/cmpbio/Sector AnalysisToolbox). The organ outline and individual clones were segmented manually in Image J software. For each fruit project, fruits were warped to a mean fruit shape by placing 50 points around the segmented fruit outlines, with five points following the replum and several reference points. For $300 \mu \mathrm{~m}$ there were four reference points, one on each corner of the rectangular shape. For gynoecia larger than $300 \mu \mathrm{~m}$ there were seven reference points with two at the base, two where the style met the valves, two on the corners of the style and one at the apex of the style in line with the replum. These placed points were subjected to Procrustes Alignment (Gower, 1975) and normalised for scale. For clones were warped to the corresponding mean shape using a Piecewise Linear Warp (Goshtasby, 1986). The area of clones was calculated from the outline in image J , and the length and width were measured using the line tool in Image J.

Heat shocking plant inflorescences

Pots containing a single plant of either Arabidopsis or Capsella were covered in Clingfilm. A small cross-shaped hole was pierced through the Clingfilm and the young plant inflorescence ($1-3 \mathrm{~cm}$ in height) was threaded through the hole. The inflorescences were heat-shocked by turning the whole plant upside down in a $37^{\circ} \mathrm{C}$ water bath for varying times between 30 s and 4 min .

Gynoecium growth curves

Capsella plants were grown in a controlled environment room on soil. The plants were standardised by selecting those at a similar stage, for example the plants that had 4 leaves at the same time. Whole inflorescences were collected and fixed for PI staining at two day intervals at about the same time of day starting from 19 to 32 days after sowing. This method was developed from a protocol for staging Arabidopsis flower buds: whole inflorescences were PI stained and imaged using OPT. Arabidopsis inflorescences were collected and
imaged (Sauret-Gueto et al., 2013).
The timing of the first flower of the main inflorescence was given in exact time in hours after sowing (HAS). The timing for subsequent flowers on the same inflorescence was calculated using the plastochron (timing interval between initiation of successive flower primordia) and the flower position. The plastochron was calculated by counting the number of newly open flowers in a 24 h period on 10 inflorescences and averaged over several days. Under these conditions the plastochron of Capsella was 4.8 h . The position of the individual flowers is the order that the flowers were initiated; so that the first flower on the inflorescence (oldest) would be at position 1 , the second flower (second oldest) would be at position 2 . Since, the flower at position 2 is initiated one plastochron after the first flower (456 HAS), the timing of the second flower would be $456 \mathrm{~h}+4.8 \mathrm{~h}=460.8 \mathrm{HAS}$.

The length and width along the mediolateral axis of gynoecia were measured using the measuring tool in Volviewer. For later stages, when inflorescences were too large for imaging by OPT, the individual fruits along the inflorescence were imaged using Leica M205C stereo microscope and measured in the Leica LAS V4 software. Gynoecium initiation, 0 days after initiation (0 DAI) was assumed to be when the gynoecium is $\sim 40 \mu \mathrm{~m}$ in length which corresponds to 450 HAS.

Supporting Model Description

Basic Factors and Functions

Growth patterns are determined by the pattern of factors distributed over the tissue, termed the canvas (Kennaway et al. 2011). Factors have one value for each segment or vertex of the canvas and are denoted by capital letters in the text. In the equations, factors that are fixed to the canvas are denoted by i subscripted with the factor name, while those that propagate through the canvas are denoted by the bold letter s subscripted with the factor name. For instance, the mobile factor GPROX is described by $\mathbf{s}_{\text {gprox }}$ in the equations. It is assumed that factor levels do not dilute with growth.

Factors may promote growth rates through the linear function pro, defined as:

$$
\begin{equation*}
\operatorname{pro}\left(p_{f}, \mathbf{x}_{f}\right)=1+p_{f} \mathbf{x}_{f}, \tag{1.1}
\end{equation*}
$$

Where \mathbf{x}_{f} is a factor, F , and \mathbf{x} denotes \mathbf{i} or $\mathbf{s} . p_{f}$ is a promotion coefficient for that factor.
Factors may inhibit growth through the function inh, denoted as:

$$
\begin{equation*}
\operatorname{Inh}\left(h_{f}, \mathbf{x}_{f}\right)=1 /\left(1+h_{f} \mathbf{x}_{f}\right), \tag{1.2}
\end{equation*}
$$

Where h_{f} is a inhibition coefficient for that factor. Values of all coefficients are given in Table S4.

Models

2D fruit models were specified using the growing polarised tissue framework as implemented in the MATLAB application GFtbox. Full details are available in Kennaway et al. 2011 and GFtbox can be downloaded from (https://www.uea.ac.uk/cmp/research/cmpbio/Gftbox). The pattern of deformation depends on growth-modulating factors, whose initial distribution is established during setup (-1 DAI to 0 DAI). Factors have one value for each vertex and values between vertices are linearly interpolated across each finite element. In the models described here, the initial canvas is oriented with regard to the external xyz-coordinate system such that the canvas base is parallel to the $x y$-axis and the long axis is parallel to the z-axis. The initial gynoecium primordium canvas consists of 2,000 elements and is locally subdivided at 160h at the midvalve generating a mesh of 2960 elements. The initial canvas size is $40 \mu \mathrm{~m}$ length and $80 \mu \mathrm{~m} \times 60 \mu \mathrm{~m}$ width (value of $z=-20 \mu \mathrm{~m}$ at the base of the canvas). Each model has two interconnected networks: the Polarity Regulatory Network (PRN) specifies tissue polarity and hence specified orientations of growth, and the Growth rate Regulatory Network (KRN) determines how factors influence specified growth rates. In total, growth interactions are specified in three equations, one for PRN and two for KRN. These networks determine the specified polarity and growth fields across the canvas. Due to the connectedness of the canvas, this specified growth differs from the resultant growth by which the system is deformed. The time step of each model corresponds to 4 h of developmental time. Models take about 20 min to run on a $\operatorname{CORE}^{\mathrm{TM}} \mathrm{i} 7$ laptop for 84 steps.

PRN

The models involve growth orientations being established by POLARISER (POL, Fig. S7) propagation from a +organiser, which is expressed at the canvas base in the PROXORG region. The identity factor, PROXORG is fixed at 1 at the base of the canvas (purple line Fig. $4 \mathrm{C})$ and 0 everywhere else. The value of POL is fixed at $1\left(b_{p o l}\right)$, where PROXORG is expressed. POL diffuses according to the equation:
$\partial \mathbf{s}_{p o l} \partial t=\mathrm{D}_{p o l} \nabla^{2} \mathbf{s}_{p o l}-\mu_{p o l} \mathbf{s}_{p o l}$,
where $\mathrm{D}_{\text {pol }}$ is the diffusion rate and $\mu_{\text {pol }}$ the decay rate of POL throughout the tissue. Parameter values are given in Table S4. POL distribution is allowed to establish during the setup phase for 6 time steps before the commencement of growth.
POL continues to propagate and the polarity field readjusts according to POL levels throughout growth. The polarity field deforms during growth because changes in tissue geometry affect the way POL becomes distributed.

KRN

There is a basic specified growth rate parallel to the polarity gradient, $K_{p a r}\left(b_{K p a r}\right)$ and a basic specified growth rate perpendicular to the polarity gradient, $K_{p e r}\left(b_{K p e r}\right)$ (values in Table S4). The canvas also grows in thickness, $K_{k n o r}$, which is maintained at the same rate in all models.

Phases

The timing of the phases was specified by growth factors $\mathbf{i}_{\text {EPHASE }}, \mathbf{i}_{\text {MPHASE }}$ and $\mathbf{i}_{\text {LPHASE }} . \mathbf{i}_{\text {EPHASE }}$ is expressed at 1 everywhere in the canvas $\geq 0 \mathrm{~h}<48 \mathrm{~h}$ and 0 after this, $\mathbf{i}_{\text {MPHASE }}$ is expressed at a level of 1 everywhere in the canvas at $\geq 48 \mathrm{~h}<208 \mathrm{~h}$ (Capsella) or 216h (Arabidopsis) and 0 before and after this and $\mathbf{i}_{\text {LPHASE }}$ is expressed at a level of 1 everywhere in the canvas at \geq 208h (Capsella) or 216h (Arabidopsis) and 0 before this.

Model 1 - E Phase and early M Phase (Capsella and Arabidopsis models)
STYLE and BASE were set up as short gradients (Fig 4D) during the set up phase with a maximum value of 1 . During the set up phase the gradients established by propagating from a region of production and then the values were fixed at each vertex once the set up phase was finished. The interactions described in Fig. 4E which set the values for $K_{p a r}$ and $K_{p e r}$ can be captured mathematically in the following equations:

$$
\begin{aligned}
K_{\text {par }}= & b_{\text {Kpar }} \\
& . \operatorname{pro}\left(p_{E P H A S E}, \mathbf{i}_{\text {EPHASE }}\right) \\
& . \operatorname{inh}\left(h_{\text {BASE }}, \mathbf{i}_{\text {BASE. }} \mathbf{i}_{\text {MPHASE }}\right) \\
K_{\text {per }}= & b_{\text {Kper }} \\
& . \operatorname{inh}\left(h_{\text {STYLE }}, \mathbf{i}_{\text {STYLE. }} \mathbf{i}_{\text {MPHASE }}\right) \\
& . \operatorname{inh}\left(h_{\text {BASE }}, \mathbf{i}_{\text {BASE. }} . \mathbf{i}_{\text {MPHASE }}\right)
\end{aligned}
$$

$$
K_{k n o r}=0.01
$$

The basic value of $K_{\text {par }}$ is promoted by $\mathbf{i}_{\text {EPHASE }}$ and inhibited by $\mathbf{i}_{\text {BASE }}$ when $\mathbf{i}_{\text {MPHASE }}$ is present. The basic value of $K_{p e r}$ is inhibited by $\mathbf{i}_{\text {STYLE }}$ and $\mathbf{i}_{\text {BASE }}$ when $\mathbf{i}_{\text {MPHASE }}$ is present. The model was run for 24 time steps (4 DAI).

Model 2 - E and M phase (Capsella model)
Model 2 has the same set up as model 1 with the addition of MIDVALVE which is set up as a domain illustrated in Fig. 5C. The interactions described in Fig. 5D which set the values for $K_{p a r}$ and $K_{p e r}$ can be captured mathematically in the following equations:
$K_{p a r}=b_{\text {Kpar }}$
. $\operatorname{pro}\left(p_{\text {EPHASE }}, \mathbf{i}_{\text {EPHASE }}\right)$
. $\operatorname{inh}\left(h_{\text {BASE }}, \mathbf{i}_{\text {BASE }} . \mathbf{i}_{\text {MPHASE }}\right)$
.pro(pMIDVALVE, $\left.\mathbf{i}_{\text {MIDVALVE. }} \mathbf{i}_{\text {MPHASE }}\right)$

```
Kper = b \kper
    .inh(hSTYLE , i_\TyLE. imphase)
    .inh(h_hASE,
    .inh(h}\mp@subsup{h}{REP}{,},\mp@subsup{\mathbf{i}}{\mathrm{ REP. }}{
    .inh(h)
```

$$
K_{k n o r}=0.01
$$

The model was run for 51 time steps (8.5 DAI). During expression of MPHASE the basic value of $K_{\text {par }}$ is promoted by $\mathbf{i}_{\text {MIDVALVE }}$ and inhibited $\mathbf{i}_{\text {BASE }}$. The basic rate of $K_{\text {per }}$ is inhibited by $\mathbf{i}_{\text {BASE }}, \mathbf{i}_{\text {STYLE, }} \mathbf{i}_{\text {REP }}$ and $\mathbf{i}_{\text {MIDVALVE }}$ when MPHASE is expressed.

Model 3 - E, M and L phase (Capsella model)
GDIST, GPROX and GMIDVALVE were set up as linear gradients and APEX was set up in small patches in the proximal region of the midvalve (Fig. S4). These three factors have a maximum value of 1 and a minimum value of 0 . During the set up phase the gradients established through region of production (fixed at 1) and a region of removal (fixed at 0) and then the values were fixed at each vertex once the set up phase was finished. The interactions described in Fig. 6F which set the values for $K_{p a r}$ and $K_{p e r}$ can be captured mathematically in the following equations:

$$
\begin{aligned}
K_{\text {par }}= & b_{\text {Kpar }} \\
& . \operatorname{pro}\left(p_{\text {EPHASE }}, \mathbf{i}_{\text {EPHASE }}\right)
\end{aligned}
$$

```
    .inh(h hASE},\mp@subsup{\mathbf{i}}{\mathrm{ BASE. }}{}\mp@subsup{\mathbf{i}}{\mathrm{ MPHASE }}{}
.pro(pMIDVALVE, , imIDVALVE. i
.inh(h (hASE , i
.inh(hSTYLE , i
.pro(p}\mp@subsup{p}{\mathrm{ GMIDVALVE },}{,}\mp@subsup{\mathbf{i}}{\mathrm{ GMIDVALVE. i}}{\mathrm{ LPPASE }
```



```
.pro(pGPROX , i}\mp@subsup{\mathbf{i}}{\mathrm{ GPROX. }}{\mathrm{ i iPHASE }
```

```
Kper }=\mp@subsup{b}{\mathrm{ Kper }}{
    .inh(h_hASE,
```



```
    .inh( }\mp@subsup{h}{\mathrm{ REP }}{},\mp@subsup{\mathbf{i}}{\mathrm{ REP. }}{}\mp@subsup{\mathbf{i}}{\mathrm{ MPHASE }}{
    .inh(h)
    .inh(hBASE , i
    .inh(hSTYLE , isTYLE. i
```



```
    .inh(hMIDVALVE , i
    .inh(}\mp@subsup{h}{\mathrm{ GPROX }}{},\mp@subsup{\mathbf{i}}{\mathrm{ GPROX. }}{
```

$K_{k n o r}=0.01$
The model was run for 84 time steps (9 DAI). During expression of LPHASE the basic value of $K_{\text {par }}$ is promoted by $\mathbf{i}_{\text {GMIDVALVE }}$ and $\mathbf{i}_{\text {GPROX }}$ and inhibited by $\mathbf{i}_{\text {BASE }}, \mathbf{i}_{\text {STYLE }}, \mathbf{i}_{\text {MIDVALVE }}$ and $\mathbf{i}_{\text {GDIST. }}$ The basic rate of $K_{\text {per }}$ is promoted by $\mathbf{i}_{G D I S T}$ and inhibited by $\mathbf{i}_{\text {BASE }}, \mathbf{i}_{\text {STYLE }}, \mathbf{i}_{\text {REP }}, \mathbf{i}_{\text {MIDVALVE }}$ and $\mathbf{i}_{\text {GPROX }}$ when LPHASE is expressed.

Model 4 - E, M and L phase (Arabidopsis model)
The interactions for the Arabidopsis model described in Fig. 5H and Fig. 6F, which set the values for $K_{p a r}$ and $K_{p e r}$ can be captured mathematically in the following equations:

$$
\begin{aligned}
K_{p a r}= & b_{\text {Kpar }} \\
& . \operatorname{pro}\left(p_{E P H A S E}, \mathbf{i}_{\text {EPHASE }}\right) \\
& . \operatorname{inh}\left(h_{\text {BASE }}, \mathbf{i}_{\text {BASE }} . \mathbf{i}_{\text {MPHASE }}\right) \\
& . \operatorname{inh}\left(h_{\text {BASE }}, \mathbf{i}_{\text {BASE. }} \mathbf{i}_{\text {LPHASE }}\right) \\
& . \operatorname{inh}\left(h_{\text {STYLE }}, \mathbf{i}_{\text {STYLE. }} \mathbf{i}_{\text {LPHASE }}\right)
\end{aligned}
$$

$$
\begin{aligned}
K_{\text {per }}= & b_{\text {Kper }} \\
& . \operatorname{inh}\left(h_{\text {BASE }}, \mathbf{i}_{\text {BASE. }} \mathbf{i}_{\text {MPHASE }}\right) \\
& . \operatorname{inh}\left(h_{S T Y L E}, \mathbf{i}_{\text {STYLE }} \mathbf{i}_{\text {MPHASE }}\right) \\
& . \operatorname{inh}\left(h_{\text {REP }}, \mathbf{i}_{\text {REP. }} \mathbf{i}_{\text {MPHASE }}\right) \\
& . \operatorname{inh}\left(h_{\text {BASE }}, \mathbf{i}_{\text {BASE. }} \mathbf{i}_{\text {LPHASE }}\right) \\
& . \operatorname{inh}\left(h_{\text {STYLE }}, \mathbf{i}_{\text {STYLE. }} \mathbf{i}_{\text {LPHASE }}\right) \\
& . \operatorname{inh}\left(h_{\text {REP }}, \mathbf{i}_{\text {REP. }} \mathbf{i}_{\text {LPHASE }}\right)
\end{aligned}
$$

$$
K_{k n o r}=0.01
$$

When MPHASE or LPHASE are expressed $K_{p a r}$ is inhibited by $\mathbf{i}_{B A S E}$ and $K_{p e r}$ is inhibited by $\mathbf{i}_{\text {BASE }}, \mathbf{i}_{\text {STYLE }}$ and $\mathbf{i}_{\text {REP }}$. The only difference in growth interactions for LPHASE is that $K_{p a r}$ is inhibited be $\mathbf{i}_{\text {STYLE }}$ when LPHASE is expressed. The model was run for 54 time steps (9 DAI) in Fig. 5 and for 81 time steps (13.5 DAI) in Fig. 6.

Model 5 - E, M and L phase (Spherical model)
The interactions for the Spherical model shown in Supp. Fig. 2 and Fig. 9, which set the values for $K_{p a r}$ and $K_{p e r}$ can be captured mathematically in the following equations:

$$
\begin{aligned}
K_{\text {par }}= & b_{\text {Kpar }} \\
& . \operatorname{pro}\left(p_{E P H A S E}, \mathbf{i}_{\text {EPHASE }}\right) \\
& . \operatorname{inh}\left(h_{\text {BASE }}, \mathbf{i}_{\text {BASE. }} \mathbf{i}_{\text {MPHASE }}\right) \\
& . \operatorname{inh}\left(h_{\text {BASE }}, \mathbf{i}_{\text {BASE. }} \mathbf{i}_{\text {LPHASE }}\right) \\
K_{\text {per }}= & b_{\text {Kper }} \\
& . \operatorname{inh}\left(h_{\text {BASE }}, \mathbf{i}_{\text {BASE. }} \mathbf{i}_{\text {MPHASE }}\right) \\
& . \operatorname{inh}\left(h_{S T Y L E}, \mathbf{i}_{\text {STYLE. }} \mathbf{i}_{\text {MPHASE }}\right) \\
& . \operatorname{inh}\left(h_{R E P}, \mathbf{i}_{\text {REP. }} \mathbf{i}_{\text {MPHASE }}\right) \\
& . \operatorname{inh}\left(h_{\text {BASE }}, \mathbf{i}_{\text {BASE. }} \mathbf{i}_{\text {LPHASE }}\right) \\
& . \operatorname{inh}\left(h_{S T Y L E}, \mathbf{i}_{\text {STYLE. }} \mathbf{i}_{\text {LPHASE }}\right) \\
& . \operatorname{inh}\left(h_{\text {REP }}, \mathbf{i}_{\text {REP. }} \mathbf{i}_{\text {LPHASE }}\right)
\end{aligned}
$$

$$
K_{k n o r}=0.01
$$

The model is run for 48 time steps (8 DAI) in Supp. Fig 2 and 84 time steps (14 DAI) in Fig. 9. When MPHASE and LPHASE are expressed the basic rate of $K_{p a r}$ is inhibited by $\mathbf{i}_{\text {BASE }}$ and the basic rate of $K_{p e r}$ is inhibited by $\mathbf{i}_{B A S E}, \mathbf{i}_{S T Y L E}$ and $\mathbf{i}_{\text {REP }}$.

Model 6 - E, M and L phase (Laterally flattened Spheroid model)
The interactions for the laterally flattened Spheroid model (like Capsella) shown in Fig. 9, which set the values for $K_{p a r}$ and $K_{p e r}$ can be captured mathematically in the following equations:

```
Kpar = b <par
    .pro(p}\mp@subsup{p}{\mathrm{ EPHASE }}{},\mp@subsup{\mathbf{i}}{\mathrm{ EPHASE }}{
    .inh(h}\mp@subsup{h}{\mathrm{ BASE }}{},\mp@subsup{\mathbf{i}}{\mathrm{ BASE. }}{}\mp@subsup{\mathbf{i}}{\mathrm{ MPHASE }}{}
    .pro(pMIDVALVE, i
    .inh(h (hASE , i
    .inh(hSTYLE , i
    .pro(pMIDVALVE , i
```

```
Kper }=\mp@subsup{b}{\mathrm{ Kper }}{
    .inh( }\mp@subsup{h}{\mathrm{ BASE }}{},\mp@subsup{\mathbf{i}}{\mathrm{ BASE. }}{}\mp@subsup{\mathbf{i}}{\mathrm{ MPHASE }}{}
    .inh(}\mp@subsup{h}{\mathrm{ STYLE }}{},\mp@subsup{\mathbf{i}}{\mathrm{ STYLE. }}{}\mp@subsup{\mathbf{i}}{\mathrm{ MPHASE }}{}
```



```
    .inh(hMIDVALVE,}\mp@subsup{\mathbf{i}}{\mathrm{ MIDVALVE. }}{\mathbf{i}
    .inh(hBASE , i
    .inh(hSTYLE , isTYLE. i
```



```
    .inh(}\mp@subsup{h}{\mathrm{ MIDVALVE , i}}{\mathbf{MIDVALVE. i}
```

When MPHASE and LPHASE are expressed the basic rate of $K_{\text {par }}$ is promoted by $\mathbf{i}_{\text {MIDVALVE }}$ and inhibited by $\mathbf{i}_{\text {BASE }}$ and the basic rate of $K_{\text {per }}$ is inhibited by $\mathbf{i}_{\text {BASE }}, \mathbf{i}_{\text {STYLE }}, \mathbf{i}_{\text {REP }}$ and $\mathbf{i}_{\text {MIDVALVE }}$. The model is run for 84 time steps (14 DAI).

Model 7 - E, M and L phase (Medially flattened Spheroid model).
The interactions for the Spherical model shown in Fig. 9, which set the values for $K_{p a r}$ and $K_{p e r}$ can be captured mathematically in the following equations:
$K_{p a r}=b_{\text {Kpar }}$

```
    .pro(p}\mp@subsup{p}{\mathrm{ EPHASE }}{},\mp@subsup{\mathbf{i}}{\mathrm{ EPHASE }}{}
    .inh(hBASE ,}\mp@subsup{\mathbf{i}}{\mathrm{ BASE. }}{
    .inh(h (hASE , i
    .inh(hSTYLE , isTYLE. i
    .pro(p}\mp@subsup{p}{REP}{,},\mp@subsup{\mathbf{i}}{\mathrm{ REP. }}{}\mp@subsup{\mathbf{i}}{\mathrm{ LPHASE }}{
Kper }=\mp@subsup{b}{\mathrm{ Kper }}{
    .inh(hBASE},\mp@subsup{\mathbf{i}}{\mathrm{ BASE. }}{
    .inh(}\mp@subsup{h}{\mathrm{ STYLE }}{},\mp@subsup{\mathbf{i}}{\mathrm{ STYLE. }}{
```



```
    .inh(h)
```



```
    .inh( }\mp@subsup{h}{\mathrm{ REP }}{,},\mp@subsup{\mathbf{i}}{\mathrm{ REP. }}{}\mp@subsup{\mathbf{i}}{\mathrm{ LPHASE }}{
    .inh(hMIDVALVE, , imIDVALVE. i
```

When MPHASE and LPHASE are expressed the basic rate of $K_{p a r}$ is promoted by $\mathbf{i}_{R E P}$ and inhibited by $\mathbf{i}_{\text {BASE }}$ and the basic rate of $K_{p e r}$ is inhibited by $\mathbf{i}_{\text {BASE }}, \mathbf{i}_{\text {STYLE }}, \mathbf{i}_{\text {REP }}$ and $\mathbf{i}_{\text {MIDVALVE }}$. The model is run for 84 time steps (14 DAI).

Model 8 - Same as Model 3 except that GDIST activity is removed and $\mathrm{K}_{\mathrm{par}}$ and $\mathrm{K}_{\mathrm{per}}$ are inhibited during the late phase.

Diffusion

Details on how diffusion equations are solved can be found in Kennaway et al. (2011). The time steps were chosen to optimise the running time of the model, but the results are the same for smaller time steps. When building the model, the end of the set-up phase was chosen as when the signalling factors that diffused through the canvas had reached an equilibrium. For most factors at this step the diffusion was stopped and so the gradients were established before the growth steps began (e.g. GDIST, GPROX, GMIDVALVE). Fig. S7 depicts the distribution of polariser and the polarity field.

We do not use finite differences, but a finite element method which is capable of stably solving the transient diffusion problem even when $2 \mathrm{D} \mathrm{dt} / \mathrm{dx}^{2}$ greatly exceeds 1 . It also has the
advantage of not requiring any regularity in the arrangement of the vertices.
The actual values that arise in the simulations are $\mathrm{dt}=4, \mathrm{dx}=$ the typical diameter of a finite element $=$ between 1.6 and 6 in the initial state (however, these values increase during growth), and values of D ranging from 0.25 to 15 (all in consistent units). No instability is observed.

Note that the only morphogen that continues to diffuse throughout the simulation is the polariser, with a D of 5 , giving $2 \mathrm{D} \mathrm{dt/dx}{ }^{2}$ of 1.1 to 16 . Test examples with much larger values of $2 \mathrm{D} \mathrm{dt} / \mathrm{dx}^{2}$ show no instability and converge over time to the steady state solution. The other diffusible morphogens only diffuse during the setup phase that establishes the initial conditions of the growth simulation. Their distribution during the final steps of the setup phase indicates that they are near steady state by the beginning of the growth phase.

Models Parameter List

The models parameter list is presented in Supp. Table 1.

SUPPLEMENTARY FIGURES

Figure S1. Gynoecium clonal analysis in the middle phase.
(A,B) Sector maps of Capsella gynoecium with clones imaged at 8.5 DAI induced at 0 (A) and 2.5 (B). In A, the clones in the valves diverge away from the base and converge back towards the style.

Scale bar, $200 \mu \mathrm{~m}$.

Figure S2. Models with continued growth interactions established in the early phase models.
(A) Capsella model outcome at 8.5 DAI showing virtual clone shapes and patterns and (B) cross-section shape is rounded. (C) Arabidopsis model outcome at 9 DAI showing virtual clone shapes and patterns and (D) cross-section shape is rounded.
Scale bar $200 \mu \mathrm{~m}$. STYLE, yellow, BASE, pink.

Figure S3. Length of midvalve and replum in Capsella gynoecia 8.5 DAI.
(A) Cross section view. White dotted line shows the cross section shape of the gynoecium.
(B) Line drawn down the middle of the valve is longer than a line drawn down the replum. Scale bar, $500 \mu \mathrm{~m}$

Figure S4. Capsella model with continued growth interactions established in the middle phase.
(A) Capsella model outcome at 14 DAI showing virtual clone shapes and patterns and (B) cross-section shape. Scale bar $500 \mu \mathrm{~m}$. STYLE, yellow, REP, pink, MIDVALVE, green.

Figure S5. Distribution of Late Phase factors on Capsella model at 8 DAI.
(A) GDIST. (B) GPROX. (C) GMIDVALVE. (D) APEX.

Scale bars $200 \mu \mathrm{~m}$.

Figure S6. Allelism test of crful alleles.
(A) Whole-mount photo of mature fruit from C. rubella wild type (left), crful-3 (centre) and crful-1 (right). Scale bar, 1 mm .
(B) SEM of fruits from crful-1 and crful-3 alleles before (upper) and after (lower) fertilisation. Scale bars, $100 \mu \mathrm{~m}$ (upper), $200 \mu \mathrm{~m}$ (lower).
(C) SEM of fruits from F1 plants originating from the indicated crosses before (upper) and after (lower) fertilisation. See Fig. 2D,G for comparison to wild type at these stages. Scale bars, $100 \mu \mathrm{~m}$ (upper), $200 \mu \mathrm{~m}$ (lower).

Figure S7. Distribution of POLARISER and orientation of Polarity field on models.
(A) Capsella (B) Arabidopsis. Scale bars $100 \mu \mathrm{~m}$.

Supplementary Table S1. Cell lengths ${ }^{1}$ and widths ${ }^{2}(\mu \mathrm{~m})$ in gynoecium of Capsella and Arabidopsis.

[^0]Supplementary Table S2. Growth rates of clones (\%/hr) during 0-4 DAI of fruit development and model.

	Average	Standard deviation	L/W ratio	Standard deviation	No. clones measured
Capsella					
$\mathrm{K}_{\text {max }}$	2.0	0.40	5.4	3.0	8
$\mathrm{K}_{\text {min }}$	0.4	0.30			
Model					
$\mathbf{K}_{\text {max }}$	1.9	0.26	2.7	0.7	50
$\mathrm{K}_{\text {min }}$	0.9	0.16			
Arabidopsis					
$\mathrm{K}_{\text {max }}$	2.2	0.44	7.7	3.8	7
$\mathrm{K}_{\text {min }}$	0.2	0.26			
Model					
$\mathrm{K}_{\text {max }}$	1.7	0.44	3.1	0.8	50
$\mathrm{K}_{\text {min }}$	0.6	0.13			

Supplementary Table S3. Growth rates of clones (\%/hr) during middle phase* of fruit development and model.

		Mean	Standard deviation	$\begin{aligned} & \mathrm{L} / \mathrm{W} \\ & \text { ratio } \end{aligned}$	Standard deviation	No. Clones Measured
Capsella						
Style	$\mathrm{K}_{\text {max }}$	1.8	0.06	8.4	0.04	2
	$\mathrm{K}_{\text {min }}$	0.3	0.03			
Model	$\mathrm{K}_{\text {max }}$	1.1	0.10	3.2	0.60	20
	$\mathrm{K}_{\text {min }}$	0.3	0.10			
Replum	$\mathrm{K}_{\text {max }}$	0.8	0.20	2.3	0.8	9
	$\mathrm{K}_{\text {min }}$	0.3	0.2			
Model	$\mathrm{K}_{\text {max }}$	1.1	0.20	2.8	1.0	21
	$\mathrm{K}_{\text {min }}$	0.4	0.30			
Valve	$\mathrm{K}_{\text {max }}$	1.0	0.27	1.0	0.4	22
	$\mathrm{K}_{\text {min }}$	1.0	0.16			
Model	$\mathrm{K}_{\text {max }}$	1.1	0.20	1.8	0.8	81
	$\mathbf{K}_{\text {min }}$	0.8	0.40			
Arabidopsis						
Style	$\mathrm{K}_{\text {max }}$	1.3	0.08	3.1	0.2	5
	$\mathrm{K}_{\text {min }}$	0.5	0.06			
Model	$\mathrm{K}_{\text {m }}$	1.3	0.10	3.7	0.6	14
	$\mathrm{K}_{\text {min }}$	0.3	0.10			
Replum	$\mathrm{K}_{\text {max }}$	1.8	0.27	5.7	2.0	5
	$\mathrm{K}_{\text {min }}$	0.6	0.17			
Model	$\mathrm{K}_{\text {max }}$	1.1	0.35	3.9	1.5	22
	$\mathrm{K}_{\text {min }}$	0.2	0.12			
Valve				3.0	0.9	10
	$\mathrm{K}_{\text {min }}$	0.4	0.16			
Model	$\mathrm{K}_{\text {max }}$	1.2	0.30	2.9	0.9	83
	$\mathrm{K}_{\text {min }}$	0.5	0.20			

[^1]
Supplementary Table S4. Model parameter list.

Parameter	Description	Value
PRN		
Polariser		
$\boldsymbol{b}_{p o l}$	$\mathbf{s}_{\text {POL }}$ production by $\mathbf{i}_{\text {PROXORG }}$ (maximum value)	1
$D_{\text {pol }}$	$\mathbf{S}_{\text {POL }}$ diffusion constant	$0.005 \mathrm{~mm}^{2} \mathrm{~h}^{-1}$
$\mu_{\text {pol }}$	$\mathbf{S P O L}^{\text {decay rate }}$	$0.0001 \mathrm{~h}^{-1}$
KRN		
Basic growth rates		
$b_{\text {Kpar }}$	Capsella, spherical, laterally flattened spheroid and medially flattened spheroid models	$1.2 \% h^{-1}$
$b_{\text {Kper }}$	Capsella, laterally flattened spheroid models	1.2\% h^{-1}
$b_{\text {Kpar }}$	Arabidopsis model	1.3\% ${ }^{-1}$
$b_{\text {Kper }}$	Arabidopsis model	$0.6 \% h^{-1}$
$b_{\text {Kper }}$	medially flattened spheroid model	$1.25 \% h^{-1}$
Setting up gradients		
$\boldsymbol{b}_{\text {BASE }}$	$\mathbf{S}_{\text {STYLE }}$ production by $\mathbf{i}_{\text {STYLE }}$ (maximum value)	1
$\mathrm{D}_{\text {STVLE }}$	$\mathbf{s}_{\text {STYLE }}$ diffusion rate	$0.25 \mu \mathrm{~m}^{2} \mathrm{~h}^{-1}$
$\boldsymbol{b}_{\text {BASE }}$	$\mathbf{s}_{\text {BASE }}$ production by $\mathbf{i}_{\text {BASE }}$ (maximum value)	1
$D_{\text {BASE }}$	$\mathbf{s}_{\text {BASE }}$ diffusion rate	$0.25 \mu \mathrm{~m}^{2} \mathrm{~h}^{-1}$
$\boldsymbol{b}_{\text {GPROX }}$	$\mathbf{s}_{\text {GPROX }}$ production by $\mathbf{i}_{\text {GPROX }}$ (maximum value)	1
$D_{\text {GPROX }}$	$\mathbf{s}_{\text {GPROX }}$ diffusion rate	$5 \mu \mathrm{~m}^{2} h^{-1}$
$\boldsymbol{b}_{\text {GOIST }}$	$\mathbf{s}_{G D I S T}$ production by $\mathbf{i}_{\text {GDIST }}$ (maximum value)	1
$\mathrm{D}_{\text {GDIST }}$	$\mathbf{s}_{\text {GDIST }}$ diffusion rate	$15 \mu \mathrm{~m}^{2} \mathrm{~h}^{-1}$
$\boldsymbol{b}_{\text {GmidValve }}$	$\mathbf{s}_{\text {GMIDVALVE }}$ production by $\mathbf{i}_{\text {GMIDVALVE }}$ (maximum value)	1
D Gmidvalve	$\mathbf{s}_{\text {GMIDVALVE }}$ diffusion rate	$15 \mu \mathrm{~m}^{2} \mathrm{~h}^{-1}$
Promotion coefficients		
$p_{\text {EPHASE }}$	growth promotion by $\mathbf{i}_{\text {EPHASE }}$	2
$p_{\text {midalve }}$	growth promotion by $\mathbf{i}_{\text {MIVVALVE }}$	0.2
$p_{\text {gmidvalve }}$	growth promotion by $\mathbf{i}_{\text {GMIDVALVE }}$	0.5
$p_{\text {GPROX }}$	growth promotion by $\mathbf{i}_{\text {GPROX }}$	2
$p_{\text {GOIST }}$	growth promotion by $\mathbf{i}_{\text {GDIST }}$	0.2
$p_{\text {REP }}$	growth promotion by $\mathbf{i}_{\text {REP }}$	0.15
Inhibition coefficients		
$h_{\text {STYLE }}$	growth inhibition by $\mathbf{i}_{\text {STYLE }}$	3
$h_{\text {BASE }}$	$K_{\text {par }}$ inhibition by $\mathrm{i}_{\text {BASE }}$	5 (mphase), 100 (lphase)
$h_{\text {BASE }}$	$K_{\text {per }}$ inhibition by $\mathbf{i}_{\text {BASE }}$	1
$h_{\text {REP }}$	growth inhibition by $\mathbf{i}_{\text {REP }}$	5
$h_{\text {MIDVALVE }}$	growth inhibition by $\mathbf{i}_{\text {MIDVaLVE }}$	1
$h_{\text {GPROX }}$	growth inhibition by $\mathbf{i}_{\text {GPROX }}$	2
$h_{\text {GOIST }}$	growth inhibition by $\mathbf{i}_{\text {GIIST }}$	4
$h_{\text {APEX }}$	growth inhibition by $\mathrm{i}_{\text {APEX }}$	100

[^0]: ${ }^{1}$ Cell length was measures parallel to the long axis of the gynoecium
 ${ }^{2}$ Cell width was measure parallel to the circumferential axis of the gynoecium

[^1]: * Capsella middle phase clones were induced at 2.5 and imaged at 8.5 DAI and Arabidopsis clones were induced at 3 DAI and imaged at 9 DAI.

