

Supplemental Figure 1. *Glued* and *Miro* mutants show no defects in actin and stable microtubule organization.

Confocal projections of bristles from wild type, scale bar 20 μ m (A-C), neur-Gal4-UAS-p150-delta96B⁵¹⁶⁴⁵, scale bar 20 μ m (D-F) and neur-Gal4-UAS-Miro-RNAi¹⁰⁶⁶⁸³, scale bar 10 μ m (G-I) pupae stained with Oregon green-phalloidin (green) and with anti-acetylated-tubulin antibodies (red). No obvious defects in stable microtubule localization pattern were detected in both mutants.

Supplemental Movie 1 - Microtubule gliding assay with wild type (DYNC1H1) immobilised recombinant human dynein.

Representative time-lapse movie of gliding of 543-labelled microtubules by surface-immobilised GFP-dynein with GFP antibodies (GFP channel not shown).

This assay was performed in 30 mM HEPES, 5 mM MgSO4, 1 mM DTT, 1 mM EGTA, 40 μ M taxol, 1 mg/ml α -casein, 2.5mM ATP, pH 7.0).

Representative time-lapse movie of gliding of 543-labelled microtubules by surface-immobilised GFP-dynein with GFP antibodies (GFP channel not shown).

This assay was performed in 30 mM HEPES, 5 mM MgSO4, 1 mM DTT, 1 mM EGTA, 40 µM taxol, 1 mg/ml á-casein, 2.5mM ATP, pH 7.0).

Supplemental Movie 3. Mitochondria tracking in a developing wild type bristle cell.

Tracking of the mitochondrial reporter *Neur-Gal4-Mito-GFP* in the middle part of a developing wild type bristle cell, using time-lapse confocal microscopy.

Supplemental Movie 4. Mitochondria tracking in a developing ${\it Miro-RNAi}$ bristle cell.

Tracking of the mitochondrial reporter *Neur-Gal4-Mito-GFP* in the middle part of a developing *neur-Gal4-UAS-Miro-RNAi*¹⁰⁶⁶⁸³ bristle cell, using time-lapse confocal microscopy.

Supplemental Movie 5. Mitochondria tracking in a developing *Milton-RNAi* bristle cell.

Tracking of the mitochondrial reporter *Neur-Gal4-Mito-GFP* in the middle part of a developing *neur-Gal4-UAS-Milton-RNAi*⁴⁴⁴⁷⁷ bristle cell, using time-lapse confocal microscopy. An overall decrease in mitochondrial density was seen, although no significant change in net mitochondrial velocity was noted.

Supplemental Movie 6. Mitochondria tracking in a developing Glued-DN bristle cell.

Tracking of the mitochondrial reporter *Neur-Gal4-Mito-GFP* in the middle part of a developing *neur-Gal4-UAS-p150-delta96B*⁵¹⁶⁴⁵ bristle cell, using time-lapse confocal microscopy.

Supplemental table 1. Mitochondrial movement parameters in *Miro-RNAi*^{iai}. Mutant parameters found to be significantly different from those of the wild type are marked with an asterisk.

Table 1. Mitochondrial transport parameters in <i>Drosophila</i> bristles		
Genotype	Miro-RNAi ^{iai}	
Movement directionality	Anterograde	Retrograde
No. of pupae	4	
No. of bristles	12	
No. of moving mitochondria	214	34
Directionality proportion (%)	86.29±3.71*	13.70±1.89*
Velocity (µm/sec)	3.31±0.6	2.46±1.15
Flux	2.70±2.79	0.42±0.44*