
Supplementary figures and methods 

 

Supplementary methods: 

 

Image Quantitation 

We used confocal image stacks with three channels (nucleus marked with 

Hoechst 25  (Ch1), tissue markers and pabpc2 marked with different 

fluorophores, Ch2 and Ch3 respectively. (Ch3). The three different channels 

are read as three separate arrays for independent analysis along 3D. To 

cover the complete brightness range of the acquired confocal images, the co- 

localization algorithm first enhances the contrast of the images. The next step 

is to convert all the images to their binary counterparts. For this, we employ 

Matlab’s inbuilt thresholding technique using Otsu’s method to choose the 

optimum threshold. Otsu’s thresholding method chooses an optimal value of 

the threshold by minimizing the interclass variance of black and white pixels. 

The holes in the image are filled to provide continuity. The binary images are 

then filtered with an average filter to remove the noisy pixels. The next step is 

to filter the binary images of the tissue marker channel with an average filter 

and then to find the regions that have more than 200 bright connected pixels 

across 3D of the stack. This ensures elimination of noisy pixels and non-

specific binding sites of the fluorophore. This is the mask for the tissue 

marker population. We next count the number of pabpc2 positive cells in the 

3D stack. The binary images of the pabpc2 positive cells are processed in a 

manner similar to that of marker positive cells to obtain the mask for pabpc2 

positive cells. Co- localization of the tissue marker with pabpc2 is determined 

by simply multiplying the masks of the tissue marker and pabpc2 cells. The 

resultant stack is finally scanned to count the co-localization in the cells. Also, 

once the cells with tissue markers are located, an edge detection algorithm 

using Canny’s edge detector traces the boundary of the stained region. The 

edges are then overlaid on the pabpc2 positive image. This provides an 

estimate of the co- localization of pabpc2 with different tissue markers.  
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Transcriptome analysis 

We obtained ~50 to 80 million reads from sequencing. These reads were 

adapter trimmed using Trimmomatic (Bolger et al., 2014). Reads that 

mapped to Schmidtea mediterranea mitochondrial genome, rRNA and other 

contamination databases were removed and remaining reads were taken for 

analysis. We used Tophat v2.0.9 (Trapnell et al., 2009) to align the reads 

back to Smed SxlV4 genome. We collated Smed Unigenes (Robb et al., 

2015), Dresden v6 (Brandl et al., 2016) and Oxford (Blythe et al., 2010) 

transcriptome using CD-HIT (Li and Godzik, 2006) (with 90% protein 

sequence identity cutoff) and obtained ~47,000 unique clusters. We derived 

gene co-ordinates by mapping to SmedSxlV4 genome using Blat (Kent, 

2002). For this collated gene model, we derived raw read count using HT-

Seq (Anders et al., 2015). The data was normalized using DESeq (Anders 

and Huber, 2010). To remove noise in the data, we used minimum cut-off of 

at least 10 normalized reads in all the four samples. We performed two-tailed 

Fisher exact test to derive statistical significance using R. Adjusted P values 

are obtained by correcting P values from Fisher exact using bonferroni 

method.  

From previous literatures we mined all known and reported progenitors in 

planaria. We also mined data from (Wurtzel et al., 2015) and (van 

Wolfswinkel et al., 2014). These datasets were blasted with the collated 

transcript model. Transcripts that showed at least 90% sequence identity & 

coverage were considered as best hit and further used for analysis. 
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Figure S1

Method:  Neighbor joining; Best Tree; Tie Breaking = Systematic

Distance: Poisson-correction
Gaps distributed proportionally 
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Figure S1. Related to Figure 1: A) PABPC2 protein with domain 

organization. The domain organization of PABPC2 predicted using Conserved 

Domain Database (CDD). The protein has four RNA Recognition Motif (RRM) 

domains and a poly (A) binding protein (PABP) domain. B) Phylogenetic tree 

depicting the relationship of PABPC2 with other PABPC across different 

species among metazoans. C) FISH showing lack of pabpc2 staining in 

pabpc2 KD animals depicting specificity of pabpc2 probe used. Animals were 

fixed 2 days post 2nd feed. Bars, 500µm (n=5). D) Seurat plot showing 

expression of Smed-pabpc2 across different cell types obtained from single 

cell transcriptome (Wurtzel et al., 2015) (Source: 

https://radiant.wi.mit.edu/app/). E) Double fluorescent in situ hybridization 

(dFISH) showing co-expression of pabpc2 with laminB and Nb.22.1e. The first 

panel images were taken at 20X. Bars, 50µm. White box represents the 

zoomed in area. Probes are indicated; (Green arrows) epidermal cells; Bars, 

5µm; n=6. 
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Figure S2. Related to Figure 2: A) Time line showing RNAi feed schedule. 

Images showing homeostatic defects in animals after pabpc2 knockdown. The 

uncut animals treated with pabpc2 dsRNA showed lesions on the body and 

subsequently lysed (100/100). Gfp dsRNA treated animals were used as 

negative control. All images were taken using Olympus BX53 wide- field 

microscope. Bars, 100µm. Graph showing the survival of uncut pabpc2 KD 

animals. Pabpc2 KD animals died 11 days post dsRNA treatment. Gfp dsRNA 

treated animals survived even after 21 days post treatment (not depicted in the 

graph). Error bars are drawn from three biological replicates. B) Stack bar 

showing percentage of cell type specific transcripts coverage in our 

transcriptome compared to the available single cell transcriptome data. C) qPCR 

analysis was done to check zfp-1 transcript level in gfp and pabpc2 KD animals 

24 hpa. Histogram depicting no significant change in zfp-1 transcript level. Error 

bars are drawn from three biological replicates. D) WISH showing decrease in 

expression of epidermal progenitors prog1 and agat1 as early as 6hpa. Bars, 200 

µm; n=8/10. 
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Figure S3. Related to Figure 3. A) Confocal images of gfp and pabpc2 KD 

animals 3d post amputation stained with anti-rootletin antibody to visualize 

ciliated epidermal cells. Images were taken on ventral side below the eye region 

at 40X at 1.1 and 2.3 magnifications respectively. Pabpc2 KD animals show 

disorganized pattern of ciliated cells. Gfp KD was used as a control. Bars, 20µm 

and 10µm for 1.1 and 2.3 magnification respectively; n=10. B) EM studies 

showing epidermal tissue organization in homeostasis worms 10 days post RNAi 

induction in gfp and pabpc2 KD animals. Yellow arrows indicate disorganized 

gland cells and reduced basal lamina in pabpc2 KD animals as compared to the 

control animals. GC- gland cells, MI- Microvilli, ECM- Extracellular matrix, Ep- 

Epidermis. Bars, 2µm; n=5. C) WISH indicating loss of expression of epidermal 

progenitors prog1 and agat1 in pabpc2 KD animals 2 days post 1st feed (1f2d). 

Bars, 200µm; n=5. D) Confocal images of gfp and pabpc2 KD animals stained 

with concavalinA-FITC showing the organization of epidermal tissue near the 

amputated region at 24hpa. Bl- Blastema. Bars, 50µm; n=12. E) WISH showing 

up regulation of wound healing genes like jun-1 and fos-1 in pabpc2 KD animals 

2f1d post induction of RNAi compared to the control animals. Bars, 100µm; n=5. 

Arrows indicate expression of genes in KD animals. F) Bar graph showing fold 

change in transcriptional pool of wound healing genes in pabpc2 KD animals 

24hpa. n.s.- non-significant. G) Quantification of level of expression of wound 

healing genes by qRT-PCR. Histogram showing fold change of wound healing 

genes in pabpc2 KD animals 2f1d post induction of RNAi compared to the control 

animals. The error bars are drawn from biological triplicates and asterisk 

represent statistical significance. Error bars represent standard error of mean 

(SEM).
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Figure S4. Related to Figure 4. A) WISH using neoblast marker, smedwi1 

showed no observable change in the expression at 3dpa in gfp and pabpc2 KD 

animals. Bars, 200µm; n=10. C) Max intensity projections of confocal images 

showing H3PS10+ cells in homeostasis animals in gfp and pabpc2 KD animals 2 

days post 2nd feed (2f2d). KD animals show 1.5-fold increase (p<0.01) in 

neoblast proliferation. Bars, 200µm; n=8.  
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Figure S5 related to Figure 5. A) WISH with collagen probe in gfp and pabpc2 

KD uncut animals 4 days post 2nd feed (2f4d). Bars, 100µm; n=6. B) Bar graph 

showing fold change in transcriptional and translational pool of some of the 

position control genes (PCGs) in pabpc2 KD animals 24hpa. C) Maximum 

intensity projections of Z-Stacks of gfp and zfp-1 KD animals sagittal sections 

stained with Collagen IV antibody at 4d post amputation. Bars, 20µm; n=6. 
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