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Materials and Methods

Materials and Experimental Methods

Photoconversion and in vivo imaging Photoconversion was performed using the FRAP mod-

ule of a confocal microscope (TCS SP8, Leica microsystems) equipped with Leica HCX IRAPO

L, x25, NA0.95 water immersion objective, as described previously (Steed et al., 2016).

Tg(fli1a:Gal4FF; UAS:Kaede) embryos were mounted in 0.7% low melting-point agarose

(Sigma Aldrich) supplemented with 50 mM BDM to inhibit heart contraction at about 36hpf.

Regions in the ventricle and the atrium were exposed to 405 nm light by applying 35 bleach

pulses (35 ms each; 25% laser power). This converted the kaede protein to its red form. A

standard z-stack of the photoconverted heart at 36hpf was then acquired, with 2 µm between

the z-sections.

Embryos were then carefully dissected from the agarose, placed in fish water for 5-10 min

until heart contraction resumed and then put at 28.5 ◦C to develop individually under standard

conditions until 48hpf. A second z-stack was then acquired at 48hpf under the same conditions

as for the 36hpf acquisitions.

In order to analyze tissue movement under perturbed flow conditions, the same experiment

was repeated for the Tg(fli1a:Gal4FF; UAS:Kaede) injected with gata1 MO, and for crosses of

sih and Tg(fli1a:Gal4FF; UAS:Kaede).

Live imaging of the beating heart was performed using light sheet microscopy (TCS SP8

DLS, Leica Microsystem) for the flow analysis between 36 and 48 hpf (Fig. S1) and confo-

cal microscopy (TCS sp8, Leica microsystems) for the AVC shortening analysis. z-stacks of

the beating hearts were synchronized post acquisition as previously described (Liebling et al.,

2006).
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AVC unfolding, quantification of the AVC shortening, and statistical analysis The three-

dimensional movement of the photoconverted cells within each heart was analyzed using a

newly developed approach.

The following steps are implemented in Matlab scripts.

• Step 1: Points on the endocardium are identified by intensity thresholding of the acquired

images and plotted in three dimensions. Points on the atrium and the ventricle are erased

interactively using the erase command of Matlab to isolate points representing the nar-

rowest and most straight part of the AVC. These points are selected and fitted with a

cylinder as described previously (McMahon et al., 2008). A reference system can then be

introduced with the axis of the cylinder as z-axis and the center of mass of the AVC points

as origin. The endocardial points are reoriented such that the points on the ventricle have

a positive z- (axial) position. The heart points are then rotated around the z-axis with this

strategy: The AVC points are projected on the x-y plane and fitted with an ellipse. The

endocardial points are then rotated around the z-axis to bring the major ellipse axis par-

allel to the y-axis and such that the internal side of the AVC (with respect to the embryo)

points has positive y-values. At this point, the angular position of cells in the AVC is

defined consistently for all the hearts.

• Step 2: The three-dimensional dataset is cut by planes obtained by rotating the half-plane

{y=0, x>0} in the z-direction. The intensity of the neighboring pixels are projected on

these planes and the endothelium traced with a line of points ordered with increasing

arc-length from the atrium to the ventricular side of the AVC. These points are then inter-

polated by a three dimensional spline (spline toolbox, matlab). Each point on the resulting

surface have a well defined angular position and the tissue length between two points at

the same angular position is computed as the archlenght on the surface between the two
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points. This is different than the length of a linear segment between two points because

the endocardium is curved.

• Step 3: The intensity of the neighboring pixels are projected on the parametric surface.

This gives a two-dimensional image with each column corresponding to the line on the

surface at a given angle. This is equivalent to unfold the AVC into a two-dimensional

image.

• Step 4: The unfolded AVC can then be segmented in two-dimensions with standard tools

to find the edges of the non-photoconverted AVC and the AVC length L as a function of

the angular position.

The same analysis was repeated at 36 and 48 hpf for each heart considered, and the AVC

shrinking factor was computed as (L48 − L36)/L36 as a function of the angular position and

averaged over the inferior, superior, internal and external regions of the AVC (Fig. 2), which

are defined consistently based on the orientation of the elliptic cross-section of the AVC and its

orientation within the embryo.

The statistical significance of the differences between the mean values calculated for control

and perturbed flow conditions was determined by unpaired Student’s t-tests and computed with

the ttest2 function of the Matlab Statistical Toolbox, without assuming equal variances.

Shown standard deviations were computed as corrected sample standard deviations using the

std Matlab function.

Computational Methods

Heart dynamics and anatomy We exploit the viscous regime of the zebrafish heart, where

the Reynolds number is reported to vary from 0.017 at 26hpf to 0.342 at 4.5 days post fertil-

ization (Santhanakrishnan and Miller, 2011). Therefore we neglect inertia effects, though they
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might alter details at 4.5dpf, as well as the overall curvature of the heart which will not alter

flow substantively at so low of Reynolds numbers. In two dimensions, the dynamics of a point

on the wall is simply defined as: y(x, t) = d0 +A sin(t/f12π+θ1) for both the upper and lower

walls, where we truncate the Fourier expansion of d(t) to the heart beat frequency f1. The time

average radius d0 and the oscillation amplitude A and the beating frequency f1 were previously

extracted from live imaging of 48hpf zebrafish hearts as described previously (Boselli and Ver-

mot, 2016). Previous works showed how two-dimensional models can well predict typical shear

stress in the heart of zebrafish embryos (Lee et al., 2013; Boselli and Vermot, 2016), which is

the focus of this work. Therefore, despite the fact that an accurate description of some hemody-

namic cues, including pressure, would require a three-dimensional model of the heart and of the

hydrodynamic load represented by the vascular system, we will simplify the system and limit

our analysis to two dimensions.

RBC model The membrane of each red blood cell (RBC) is modelled as an elastic shell of

tension modulus T and bending modulus M . The interior of the cell is molded as a fluid with

the same viscosity as the plasma surrounding the cell. The flow of the plasma and of the cytosol

are treated as Stokesian such that the flow velocity ui can be expressed by the boundary integral

ui(x, t) =
1

4πµ

∫
Ω
Sij(y − x) ∆σj(y) ds(y), (1)

where Sij is the Stokeslet tensor, s is the arc-length position of a point x(s) on the membrane,

and ∆σj is the traction of the membrane on the fluid. For the cell membrane, the traction is

given by the relation:

∆σi =
∂τ

∂s
ti +

∂

∂s

(
∂b

∂s
ni

)
, (2)

with τ the membrane tension,

τ = T

(
ds

ds0

− 1

)
, (3)
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and b the bending moment,

b = M (C(s)− C0) , (4)

with C the curvature and C0 a constant initial curvature that cancels out in (2). The coordinate

s0 in Eqations (3) and (4) is the referential arch-length position of a point on the cell membrane

in an hypothetic stress-free configuration. In practice, the stress-free shape of the RBCs does

not need to be defined. It is sufficient to set the perimeter l0 of the stress-free membrane and the

area r2
0π of each of our two-dimensional RBCs such that l0 6= 2πr0. Starting from an arbitrary

initial configuration (here a sphere of perimeter 2πr0), the RBC will assume a configuration

that minimize the elastic energy of the membrane. The time required by this process scales

like the relaxation time of the red blood cell τrlx = r0µ/T , and its ratio with the convective

time scale τU = r0/U gives a non dimensional index of the elasticity of the red blood cells

(Freund, 2007). The main simulations were set-up such that τrlx/τU = 0.16, r2
0T/M = 12.5

and l0/(2πr0) = 1.6π. Simulations presented in Fig. S3, where repeated for l0/(2πr0) = 1.2π,

τrlx/τU = 0.1, and τrlx/τU = 0.32, which, in the order, correspond to rounder, stiffer and softer

red blood cells. The research code is available upon request.

Wall model The heart walls dynamics is obtained by imposing the wall traction

∆σw
i = −kw(xi − xwi ). (5)

which is equivalent to link each point on the wall to their desired location xw by a vir-

tual spring of stiffness kw, which was kept constant and such that kwr2
0/T = 1.5 in the main

simulations.

The flow velocity due to the wall traction can be expressed by the same boundary internal

formulation (1) used for the cell membrane, but with ∆σw
i instead of ∆σm

i . As for the RBCs,

the number of points necessary to describe the shape of the wall is smaller than that required
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to compute the integrals along the wall. Only these control points are carried on during time

integration. The extra collocation points for the space integrals are then obtained by Fourier

interpolation, which exploits the periodicity of the boundary.

Time integration A point x = {xi} on the cell membrane or on the wall moves then accord-

ing to

∂xi
∂t

= ui(x, t), (6)

where ui now is the sum of the contribution of all the cell membranes and the walls in the model

system. Time integration is performed by a second order Runge-Kutta scheme. The time step

dt was set such that dt ∗ f1 = 5 · 10−5.

Numerical discretization The boundary integral (1) is computed by a quadrature around the

periodic membranes (cells and walls). The quadrature can be computed on a uniform grid

by discretizing the membrane with Na points uniformly spaced in s0 and by expressing the

Cartesian x(s0) and the archlength s(s0) coordinates as a function of s0:

umi =
1

4πµ

Na∑
n=1

Sij(x
n − xm) ∆σn

j

ds

ds0

|n∆s0 (7)

for m = 1 . . . N ;

where Na is the number of points on the cell membrane and wall used for the quadrature and

N = Nm + Nw + N v is the number of evaluation points, which is the sum of Nm collocation

points used to represent the cell membrane, Nw wall points, and N v points where to evaluate ui

for post processing or simply for visualization.

The numerical discretization, including the PME method employed to speed up the evalua-

tion of (7), is described in details in (Freund, 2007). Starting from the results in (Freund, 2007),

the collocation points on the membrane of each RBCs was set to 128, and to 800 on the wall.
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Computation of the shear stress The integral boundary methods extend the flow domain

over the whole space such that flow is also computed outside the actual domain of interest.

Therefore, the wall shear stress at the endocardial interface is computed as τw = σw
i t

w
i + τout,

where twi is the unit tangent vector to the wall and τout is the wall shear stress due to the flow

outside the heart model. This is computed as τout = (ui|dtwi − ui|wtwi )/d where d is chosen

to minimize σw
i t

w
i − τout − τin without RBCs. τin is not computed directly to avoid the finite

difference kernel to overlap with an RBC passing very close to the wall.The research code is

available upon request.
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Supplementary figures and movies

Supplements include one movie: Movie 1; there supplementary figures: Fig. S1, S2, 3; and

Table S1.

Movie 1: Related to Fig. S1G-I and 3. This movie illustrates the dynamics of 106 red blood

cells (red) and of the walls (black) in the proposed computational model of the embryonic heart.

symbol definition
τ wall shear stress
τ̄ phase average of τ
τ0 time average of τ
τ1 fundamental harmonic component of τ , oscillating with the same

frequency as the heart f1

τn harmonic component of τ oscillating at frequency fn
τ̃ root mean square (rms) amplitude of non periodic oscillations

associated to the chaotic flow of red blood cells

Table S1: Brief definition of the symbols used in the analysis of the wall shear stress.
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Figure S1: Reversing, oscillatory flow in the AVC between 36 and 48 hpf. A-C) Maximum pro-
jection of the three-dimensional reconstruction of a 36 hpf Tg(fli:kaede;gata1:dsRed) zebrafish
heart at three different instants of the heart beat. The dsred labelled red blood cells are shown
in magenta, while endocardial cells are shown in green. D,E) Flow direction in the AVC at D)
36hpf and E) between 36-48 hpf: magenta, flow moves from atrium to ventricle; black, flow is
from ventricle to atrium; white, no flow or not visible. F) Average percentage of reversing flow
per heart beat. G-I) Computational model for RBC flows between 36-48 hpf at three different
instants of the heart beat (cf. Movie 1). J) Flow direction in the AVC model: solid arrows point
in the direction of the flow. Dashed squares point out the uneven-time dependent distribution of
RBCs in K) the model, and L,M) in vivo.
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Figure S2: Shear stress pattern during tissue convergence (higher harmonics) in complement
to Fig. 3. A,C) Second (τ2) and B,D) third (τ3) harmonics. The results in A and B are for 106
red blood cells. The results on C and D are for the upper wall and for different numbers of red
blood cells np =1, 17, 54,106 (arrows point to larger values of np). The superscript ∗ denotes
that results are normalized by the space average of

∫
t f1|τ |dt. a: atrium; avc: atrioventricular

canal; v: ventricle.
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Figure S3: Model sensitivity to red blood cell (RBC) shape and stiffness. Related to Fig. 3.
A) Computational model for RBC flows at three different instants of the heart beat for round
elastic red blood cells (cf. Fig. S1G-I). B) Flow direction in the AVC model: magenta, flow is
from atrium to ventricle; black, flow is from ventricle to atrium; white, no flow or not visible.
Solid arrows point in the direction of the flow. C) Fundamental harmonic τ1, D) time average
τ0, and E) non-periodic oscillation τ̃ of the shear stress. C-E) The blue solid line corresponds to
the RBC shape of the test case of Fig. S1 and 3, np =106, and τrlx/τU = 0.16. The three dashed
lines correspond to the rounder RBC shape shown in A and are obtained using the same, stiffer
(τrlx/τU = 0.1), and softer (τrlx/τU = 0.32) RBC membranes (dashed arrow points to larger
value of stiffness). The superscript ∗ denotes that results are normalized by the space average
of
∫
t f1|τ |dt. a: atrium; avc: atrioventricular canal; v: ventricle.
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