
SUPPLEMENTARY MATERIAL 

1. Data

Analysis is based on a data set of 32 wild type C57BL/6J fetal mouse kidneys of embryonic age E11.5 to 

E15.5 and an additional 28 mutant and control samples (all on an inbred C57BL/6J background, see Table S1). 

Table S1. Mouse ureteric tree data used. 

Group Approximate Age 
(embryonic day) 

Limb 
Stage 

Samples tip number 
(mean ± stdev) 

Wild type time series 11.5 7 6 13.5±5.4 

Wild type time series 12.5 8 5 25.0±2.9 

Wild type time series 13.25 9 7 85.7±18.6 

Wild type time series 13.75 10 5 116.2±15.8 

Wild type time series 14.5 11 5 224.8±45.1 

Wild type time series 15.5 12 4 621.3±35.8 

Wild type time series total 32 

Tgfb2+/- mutant 14.5 11 4 106.0±23.2 

Bmp7+/+ control 14.5 11 12 247.9±71.4 

Bmp7-/- mutant 14.5 11 9 58.3±19.0 

Spry1-/- mutant 13.5 9/10 3 121.3±12.6 

Mutant / control total 28 

2. Statistical notes

Statistical analysis was performed using the R programming language and RStudio environment. All t-tests 

were two-sided and unpaired, using the Welch adjustment for possibly unequal variance (using the t.test 

function in R with default parameters). Linear regression and ANOVA was performed with the lm function 

in R (using the f-statistic).  

Age and size matched controls 

Dedicated control groups were available for the Bmp7 mutants, while the Spry1 and Tgfb2 mutants were 

compared to age matched data from the wild type time series data. For Spry1, the combined E13.25 and 

E13.75 wild type data was used. 

For some analyses, size matched alternative controls (based on tip number) were also used, to test 

whether observed differences in the mutant groups could be explained as the result of a general delay in 

development. The E14.5 Tgfb2 mutant was compared to the combined E13.25 and E13.75 wild type data, 

and the Bmp7 mutant to the combined E12.5 and E13.25 wild type data. The Spry1 mutant did not differ 

substantially in tip number from the age matched control group, so no alternative control was used. 
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Mutant comparisons 

Mutant phenotypes were quantified by a comparison of kidney level metrics between mutant and control 

groups. The large variation between samples in some mutant groups did not appear consistent with a 

normal distribution, so a Wilcoxon rank sum test was performed using the R function wilcox.exact from 

package exactRankTests. This function produced the estimate and 95% confidence interval for the median 

difference, used in Fig. 6, Fig. 7 and Fig. S3.  

Surface area was calculated for a convex hull on the set of tip points, using the R function convhulln from 

the geometry package, which interfaces the Qhull library (Barber, Dobkin et al. 1996). 

For the number of tips per unit surface area and balance metrics, we are interested in difference 

compared to both age and size (tip number) matched wild type kidneys. In Fig. 6 and 7, the standard (age 

matched) controls were used; the alternative comparisons using size matched controls are shown in Fig. 

S3. 

 

3. Tip state models 

A tip state model is defined by a finite set of tip states, a specified initial state, and a transition rule which 

deterministically maps each state to a set of one or more new states. The transition rule is applied to 

produce a sequence of rooted trees (Epp 2004) in which each tip has an associated state from the allowed 

set; the first tree in the sequence consists of a single tip with the specified initial state. At each iteration, 

the rule is applied independently and simultaneously to each tip. If the current state of a tip is mapped to 

a single new state, then only the state is changed. If the tip state is mapped to more than one state, then 

child nodes are added to the tip with the assigned states; the original node is no longer a tip and does not 

have an associated state. The order of child nodes is not important, as we are ultimately concerned with 

distinct structures only up to graph isomorphism (Epp 2004). A state which is mapped to more than one 

new state is a branching state. 

Tip state is an internal parameter which is used to generate the trees but is ultimately discarded, as it is 

unobservable in real trees; we say that two trees are isomorphic (written ≡) if they are graph isomorphic, 

with tip state ignored if either or both trees possess it. Another potential source of ambiguity is that two 

models may produce the same tree structure at different positions in their generated sequences. Hence 

we define the family of rooted trees associated with a model to be the set of trees that occur in the 

generated sequence, with tip state ignored, which are distinct up to graph isomorphism. Tip state models 

which produce the same family of trees (up to isomorphism) are considered equivalent, and a model 

which is equivalent to a model with fewer states is degenerate, and excluded from the enumeration.  

It is possible that a tip state model will produce only a finite number of trees. If any branching state occurs 

which gives rise after some number of iterations to at least one tip with the same (branching) state, then 

the tree sequence produced is infinite. If there are k states, there can be at most 𝑘 − 1 iterations of the 

model in which branching occurs before such a loop arises. Thus models which fail to give an infinite 

sequence of trees give at most k distinct trees. We call such models trivial, and as with degenerate models 

we exclude them from enumeration. 
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Classification of binary tip state models 

Since we are modelling bifurcating tree structures, from here on we only consider binary models, in which 

each state is mapped to either one or two states; a bifurcating state is one which is mapped to two new 

states. In the following we develop some properties of these models, in particularly classifying all non-

equivalent binary tip state models with up to three states, and proving the asymptotic balance property 

of a class of tip state models.  

Notation 

We denote a tree consisting of a single tip of state 𝑎 by just writing 𝑎, relying on context to distinguish 

from the state 𝑎, and let (𝑇1, 𝑇2) denote a tree with more than one tip, in which the two children of the 

root node are the roots of subtrees of type 𝑇1 and 𝑇2. Note that this notation can be used recursively to 

specify any rooted binary tree together with tip states. We also use this notation with no state specified 

to denote tree structures where the tips do not have names or states; so for example () is the trivial tree, 

and (( , ), ( , )) is the symmetric tree with 4 tips. This is known as Newick notation (Krane 2003). 

For a given tip state model, the transition rule is formally an automorphism on the set of rooted trees with 

labelled tips. When the model in question is clear we denote this associated function f, so 𝑓𝑛(𝑇) is the 

result of 𝑛 consecutive transformations of an initial (tip labelled) tree T. We write 𝑇1 ↦ 𝑇2 as a shorthand 

for 𝑓(𝑇1) = 𝑇2.  

For a tree 𝑇 generated from a tip state model with 𝑘 states, the number of tips in each state can be 

represented by a state vector 𝒔(𝑇) ∈ ℤ𝑘. This requires an ordering of the states; we typically denote states 

with lowercase Latin letters and assume alphabetical ordering (of course reordering states will not 

fundamentally change the model). Since the result of transforming a tip is deterministic and depends only 

on its initial state, the state vector of 𝑓(𝑇) is a linear transformation of the state vector of 𝑇. That is: 

Lemma 1: For any binary tree state model, there is a unique 𝑘 × 𝑘 matrix 𝑀 such that 𝒔(𝑓(𝑇)) = 𝑀𝒔(𝑇).  

We refer to 𝑀 as the state transition matrix. Another immediate consequence of the transition function 

acting separately on each function is: 

Lemma 2: 𝑓((𝑇1, 𝑇2)) = (𝑓(𝑇1), 𝑓(𝑇2)) 

We now introduce the first non-trivial family of rooted binary trees. 

Definition: The nth perfect tree, denoted 𝑃𝑇(𝑛), is the completely balanced binary tree formed by 𝑛 − 1 

consecutive bifurcations of every tip, starting with a single node. Recursively, 𝑃𝑇(1) = () and 

𝑃𝑇(𝑛 + 1) = (𝑃𝑇(𝑛), 𝑃𝑇(𝑛)). 𝑃𝑇(𝑛) has 2𝑛−1 tips and 2𝑛-1 nodes in total. 

 

One-state models 

We begin the enumeration of binary tip state models by supposing there is only one possible tip state. In 

this case the only non-trivial model produces the perfect trees. 

Observe that any model with no bifurcating state will produce only the trivial tree, while a model where 

all states bifurcate will give 𝑓𝑛(𝑎) = 𝑃𝑇(𝑛). This immediately resolves the one-state case, and also gives 
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the following lemma. Recall that a degenerate model is one that is equivalent to (produces the same trees 

as) a model with fewer tip states, and we disregard such models: 

Lemma 3: Given any binary tip state model with more than one state, then if all states are bifurcating the 

model is degenerate, while if no states are bifurcating then it is trivial. 

 

Two-state models 

We show that there are two distinct models with two tip states (excluding trivial and degenerate models). 

One is the Fibonacci model (see Fig. 2A); the other produces trees consisting of a single “trunk” and a 

series of tips branching from it, which we call the singleton domain model. This “domain” branching is 

named for the pattern of trunk and offshoot branches seen in the lung (Metzger, Klein et al. 2008) but it 

is not capable of modelling ureteric tree structures. 

By Lemma 3, we can assume there is one bifurcating and one non-branching state. Up to isomorphism we 

have cases 

1. 𝑎 ↦ 𝑎 and 𝑏 ↦ (𝑎, 𝑎) 
2. 𝑎 ↦ 𝑎 and 𝑏 ↦ (𝑏, 𝑏) 
3. 𝑎 ↦ 𝑎 and 𝑏 ↦ (𝑎, 𝑏) 
4. 𝑎 ↦ 𝑏 and 𝑏 ↦ (𝑎, 𝑎) 
5. 𝑎 ↦ 𝑏 and 𝑏 ↦ (𝑏, 𝑏) 
6. 𝑎 ↦ 𝑏 and 𝑏 ↦ (𝑎, 𝑏) 

In theory each of these cases corresponds to two models, depending on the choice of start state. But if 

the start state is a then it will either be mapped to itself, giving a trivial model, or it will be mapped to b, 

producing the same sequence of trees with a delay of one time step as the model with start state b, and 

is thus equivalent to that model. So we need only consider start state b. In fact, we can assume for any 

model (not restricted to bifurcating models) that the start state is a branching state. Although in general 

it may take more than one iteration for an initial non- branching state to be mapped to a branching state, 

it will always be equivalent to the model starting at that branching state. 

Lemma 4: A tip state model with a non-branching initial state is either trivial or is equivalent to a model 

which has a branching initial state and is otherwise the same. 

Thus when enumerating distinct models, we assume that the start state is branching.  

Returning to two-state models and the six cases above, case 1 is trivial, while cases 2, 4, and 5 are 

degenerate (in cases 2 and 5  𝑓𝑛(𝑏) ≡ 𝑃𝑇(𝑛), while in case 4 𝑓𝑛(𝑏) ≡ 𝑃𝑇(⌊(𝑛 + 2)/2⌋)). Case 3 produces 

a new family with trees of the form (𝑎, (𝑎, (… (𝑎, (𝑎, 𝑏)) … ))). This pattern of repeated offshoots from a 

trunk is seen in the branching of organs such as the lung, and we refer to it as domain branching. But our 

2-state system cannot model further development of the offshoots. We call this minimal model singleton 

domain branching. 

This leaves Case 6, which we call the Fibonacci model.  

Definition: The nth Fibonacci tree, denoted 𝐹𝑇(𝑛), is defined recursively by 𝐹𝑇(1) = 𝐹𝑇(2) = () and 

𝐹𝑇(𝑛 + 2) = (𝐹𝑇(𝑛), 𝐹𝑇(𝑛 + 1)). 
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Case 6 produces exactly the set of Fibonacci trees: 𝑓𝑛(𝑏) ≡ 𝐹𝑇(𝑛 + 1). From the recursive definition of 

the Fibonacci numbers, the following follows immediately: 

Lemma 5: 𝐹𝑇(𝑛) has 𝐹(𝑛) tips, where 𝐹(𝑛) is the nth Fibonacci number. 

We have completed the 2 state classification: 

Theorem 1: The only non-trivial and non-degenerate 2-state binary tip state models are the Fibonacci and 

singleton domain branching models. 

Generalised delay models - single branching state 

Before we examine three-state models in detail we first consider a class which can be regarded as a 

generalization of the Fibonacci model. The Fibonacci model has a single branching state, with one child 

tip that branches at the next model iteration and the other child branching with the delay of one additional 

model iteration. Similar models with additional states allow variable delays before bifurcation.  

Suppose there is a single branching state c, and 𝑓(𝑐) = (𝑎, 𝑏), where 𝑎, 𝑏, 𝑐 are not necessarily distinct. 

Then we have 3 cases up to generality: 

1. 𝑓𝑝(𝑎) = 𝑓𝑞(𝑏) = 𝑐, for some 𝑝 ≥ 𝑞 ≥ 0. 
2. 𝑓𝑞(𝑏) = 𝑐 for some 𝑞 ≥ 0 but there is no 𝑝 such that 𝑓𝑝(𝑎) = 𝑐 
3. There is no 𝑝 or 𝑞 such that 𝑓𝑝(𝑎) = 𝑐 or 𝑓𝑞(𝑏) = 𝑐. 

 

Case 2 will produce the singleton domain branching trees (branching will be delayed but the tree 

structures produced are the same), and hence will be degenerate for more than 2 states, while case 3 will 

produce only the trees () and (, ). We are left with case 1, which we define as the generalized (𝑝, 𝑞) delay 

model. 

 

Definition: For integers 𝑝 ≥ 𝑞 ≥ 0, the (𝑝, 𝑞) delay model is a model with a single bifurcating state 𝑐, with 

𝑓(𝑐) = (𝑎, 𝑏) and 𝑓𝑝(𝑎) = 𝑓𝑞(𝑏) = 𝑐. The generalized delay tree 𝐷𝑇
𝑝,𝑞

(𝑛) is the tree structure 𝑓𝑛(𝑐), 

produced by the (𝑝, 𝑞) delay model. 

 

Lemma 6: The (non-degenerate) (𝑝, 𝑞) delay model will have 𝑝 + 1 states 𝑎, 𝑓(𝑎), 𝑓2(𝑎), … , 𝑓𝑝(𝑎) = 𝑐, 

with 𝑏 = 𝑓𝑝−𝑞(𝑎).  

Proof: The listed states must exist and be distinct. Since this is sufficient to produce the delay trees, a 

model with more states is degenerate.  

Note that 𝐷𝑇
1,0(𝑛) = 𝐹𝑇(𝑛 + 1); the difference by one in the index is because the Fibonacci trees were 

defined to match the Fibonacci numbers (Lemma 5). The recursive definition of 𝐹𝑇(𝑛) generalises as 

follows: 

Lemma 7: 𝐷𝑇
𝑝,𝑞(𝑚 + 𝑝 + 1) = (𝐷𝑇

𝑝,𝑞(𝑚), 𝐷𝑇
𝑝,𝑞(𝑚 + 𝑝 − 𝑞)) for 𝑚 ≥ 0 

Proof: From the definition and Lemma 2,  

𝐷𝑇
𝑝,𝑞(𝑚 + 𝑝 + 1) = 𝑓𝑚+𝑝+1(𝑐) = 𝑓𝑚+𝑝((𝑎, 𝑏)) = (𝑓𝑚+𝑝(𝑎), 𝑓𝑚+𝑝(𝑏)) = (𝑓𝑚(𝑐), 𝑓𝑚+𝑝−𝑞(𝑐)) 

The result follows. □ 
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The perfect trees can also be regarded as the base case of the generalized delay model: 𝐷𝑇
0,0(𝑛) = 𝑃𝑇(𝑛). 

Thus we have categorised all models with a single branching state: 

Theorem 2: Any non-trivial binary tip state model with exactly one branching state will produce either 

singleton domain trees or a family of generalized delay trees. 

We now examine balance in the delay model. 

 

Theorem 3: The asymptotic balance at the branching points of 𝐷𝑇
𝑝,𝑞

(𝑛) as the weight tends to infinity is 

𝜆𝑝−𝑞, where 𝜆 is the (unique) positive real solution of 𝜆𝑝+1 − 𝜆𝑝−𝑞 − 1 = 0. 

 

Proof: We consider the root node of 𝐷𝑇
𝑝,𝑞

(𝑛) as 𝑛 → ∞. By Lemma 7, the balance at this node is 

the ratio between the weight of two smaller 𝐷𝑇
𝑝,𝑞

 trees, one of which is (𝑝 − 𝑞) iterations 

advanced from the other. Consider the (𝑝 + 1) × (𝑝 + 1) transition matrix M for the (𝑝, 𝑞) delay 

model. Assuming states are ordered 𝑎, 𝑓(𝑎), 𝑓2(𝑎), … , 𝑓𝑝(𝑎), M has ones in position (𝑖 + 1, 𝑖), 

𝑖 = 1,2, … , 𝑝, plus positions (1, 𝑝 + 1) and (𝑝 − 𝑞, 𝑝 + 1) in the last column representing the 

bifurcating state. This matrix has characteristic equation 𝜆𝑝+1 − 𝜆𝑝−𝑞 − 1 = 0. Since 𝑝 + 1 >

𝑝 − 𝑞 ≥ 0, M will thus have exactly one positive real eigenvalue 𝜆, which will be greater than 1. 

Therefore in the asymptote, the number of tips increases by a factor of 𝜆 in each model iteration 

(the corresponding eigenvector gives the asymptotic tip state proportions). Thus by Lemma 7, the 

asymptotic root balance is 𝜆𝑝−𝑞. 

The subtree associated with each branch point is itself a 𝐷𝑇
𝑝,𝑞

 trees, so this asymptotic property 

generalizes from the root to each branch point.  

 

Since 𝐹𝑇(𝑛) = 𝐷𝑇
1,0(𝑛), we have the following result: 

Corollary 1: The Fibonacci trees have asymptotic balance (√5 + 1)/2 ≅ 1.61 

 

Three-state models 

In this section we show that there are 34 distinct three-state bifurcating tip models, including one which 

is potentially useful for modelling ureteric trees, which we call the half-delay model. By Lemma 3, the non-

degenerate 3 state models have exactly one or two bifurcating states, so we consider these two cases in 

turn. 

We have shown that a single branching state implies that the only non-degenerate models are (𝑝, 𝑞) delay 

models. By Lemma 6 we have 𝑝 = 2, and hence 𝑞 = 0,1,2. The (2,2) delay model will give perfect trees 

so is degenerate. Hence we have two three-state models with a single branching state, the (2,0) and (2,1) 

delay models.  

By Theorem 2, the (2,1) delay model will have asymptotic balance ≅ 1.325, while the (2,0) delay model 

will have asymptotic balance ≅ 2.148 (the square of the asymptotic growth rate ≅ 1.466). Hence the 

(2,1) delay model is potentially useful for modelling ureteric trees, but the (2,0) delay model is not since 

it gives balance values outside the observed range. 
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We call the (2,1) delay model the half-delay; see Fig. 2B. 

In the remainder of this section we consider models with 2 branching states. Assume that states b and c 

branch, a does not. The cases are listed below up to generality, with each distinct, non-trivial and non-

degenerate model noted in bold; we confirmed that these 32 models are distinct by generating all trees 

with up to 200 tips for each model, and comparing the tip numbers and in some cases tree structures until 

we were able to distinguish all models. Two main groups are domain structures, where one branching 

state is strictly downstream from the other, and nested structures, where each branching state will give 

rise to the other (possibly with delay). Note that by Lemma 4, in each case listed below we have two 

starting starts to consider, b and c; we use ss to refer to the initial state. 

1. Both b and c branch symmetrically: this will give a perfect tree (note that all tips will have the same 
state at each step). Thus this case is degenerate. 

2. Exactly one of b and c branch symmetrically. Without loss of generality assume it is c. 
a. 𝑐 ↦ (𝑐, 𝑐); we consider only initial state b since c gives perfect trees (degenerate). 

i. 𝑏 ↦ (𝑏, 𝑐): Degenerate, produces perfect trees. 
ii. 𝑏 ↦ (𝑎, 𝑏): 

1. 𝑎 ↦ 𝑎: Degenerate, produces singleton domain trees.  
2. 𝑎 ↦ 𝑏: Degenerate, produces Fibonacci trees. 
3. 𝒂 ↦ 𝒄: Domain branching with a perfect tree at offshoots after single step 

delay; equivalent to a perfect tree with one pair of tips advanced beyond the 
rest.  

iii. 𝑏 ↦ (𝑎, 𝑐): 
1.  𝒂 ↦ 𝒂: Produces trees of the form (𝒂, 𝑷𝑻(𝒏 − 𝟏)), with a single tip plus a 

perfect tree arising directly from the root node.  
2. 𝒂 ↦ 𝒃: Produces a family trees similar to domain branching except that the 

offshoots are more advanced than the trunk. We can write this family 
recursively as 𝑻𝟏 = (), 𝑻𝟐 = (, ), 𝑻𝒏+𝟐 = (𝑻𝒏, 𝑷𝑻(𝒏 + 𝟏))  

3. 𝒂 ↦ 𝒄: Produces trees of the form (𝑷𝑻(𝒏), 𝑷𝑻(𝒏 + 𝟏)); both sides are perfect 
trees, but one is one step more advanced.  

b. 𝑐 ↦ (𝑏, 𝑏) 
i. 𝑏 ↦ (𝑏, 𝑐): Degenerate, produces perfect trees. 

ii. 𝑏 ↦ (𝑎, 𝑏):  
1. 𝒂 ↦ 𝒂: Gives trees consisting of two equal singleton domain trees descending 

from the root node, if ss=c. Degenerate if ss=b (produces singleton domain 
trees). 

2. 𝒂 ↦ 𝒃: Gives trees consisting of two equal Fibonacci trees descending from 
the root node, if ss=c. Degenerate if ss=b (produces Fibonacci trees). 

3. 𝒂 ↦ 𝒄: 2 Nested models 
iii. 𝑏 ↦ (𝑎, 𝑐):  

1. 𝒂 ↦ 𝒂: 2 distinct models: Resemble perfect trees with the addition of 
singleton offshoots off every node between each main branching generation; 
models vary on whether this occurs at odd or even generations. 

2. 𝒂 ↦ 𝒃: 2 distinct models: ss=b gives nested “3-cherries”; recursively,  𝑻(𝒏) =

(𝑻(𝒏 − 𝟐), (𝑻(𝒏 − 𝟐), 𝑻(𝒏 − 𝟐))); ss=c gives pairs of these trees descending 

from the root. 
3. 𝒂 ↦ 𝒄: 2 Nested models. 
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c.  𝑐 ↦ (𝑎, 𝑎) 
i. 𝑏 ↦ (𝑏, 𝑐): 

1. 𝒂 ↦ 𝒂: ss=b gives domain branching with 𝑷(𝟐) domains; ss=c trivial 
2. 𝒂 ↦ 𝒃: 2 Nested models. 
3. 𝒂 ↦ 𝒄: ss=b gives domain branching with perfect domain subtrees; compared 

to 2a(ii)3 (𝒄 ↦ (𝒄, 𝒄), 𝒃 ↦ (𝒂, 𝒃), 𝒂 ↦ 𝒄) there is extra delay step, so more 
asymmetric; ss=c degenerate, gives perfect trees. 

ii. 𝑏 ↦ (𝑎, 𝑏):  
1. 𝑎 ↦ 𝑎: Degenerate (domain branching). 
2. 𝑎 ↦ 𝑏: Equivalent to 2b(ii)2: Fibonacci, or each half is Fibonacci. 
3. 𝒂 ↦ 𝒄: ss=b gives domain model with “slow growing” perfect tree offshoots; 

ss=c degenerate, gives perfect trees. 
iii. 𝑏 ↦ (𝑎, 𝑐):  

1. 𝑎 ↦ 𝑎: Trivial, produces {( ), (, ), (, ( )) } 

2. 𝒂 ↦ 𝒃: 2 Nested models. 
3. 𝒂 ↦ 𝒄: ss=b gives both perfect trees and trees of the form (𝑷𝑻(𝒏), 𝑷𝑻(𝒏 +

𝟏)); ss=c degenerate, gives perfect trees only 
3. Both b and c branch asymmetrically.  

a. 𝑏 ↦ (𝑎, 𝑥) and 𝑐 ↦ (𝑎, 𝑦), for 𝑥, 𝑦 ∈ {𝑏, 𝑐}: Degenerate; gives singleton domain branching 
(states b and c are redundant). 

b. 𝑏 ↦ (𝑤, 𝑥) and 𝑐 ↦ (𝑦, 𝑧), for 𝑤, 𝑥, 𝑦, 𝑧 ∈ {𝑏, 𝑐}: Degenerate; gives perfect trees. 
c. 𝑐 ↦ (𝑏, 𝑐) 

i. 𝑏 ↦ (𝑎, 𝑏): 
1. 𝒂 ↦ 𝒂: ss=c gives domain branching where every domain is singleton domain 

tree; ss=b degenerate (singleton domain trees). 
2. 𝒂 ↦ 𝒃: ss=c gives domain branching where each domain is Fibonacci; ss=b 

degenerate (Fibonacci trees). 
3. 𝒂 ↦ 𝒄: 2 Nested models. 

ii. 𝑏 ↦ (𝑎, 𝑐): 
1. 𝒂 ↦ 𝒂: 2 Nested structures with repeated singleton offshoots; for ss=b tip 

numbers equal Fibonacci, but structure is distinct.  
2. 𝒂 ↦ 𝒃: 2 Nested models. 
3. 𝒂 ↦ 𝒄: 2 Nested models. 

 

In total there are 32 distinct, non-degenerate 3 state models with 2 branching states. Of these, 20 are 

nested (these models are in pairs, with distinct models being produced depending on the initial state) and 

7 are domain branching structures with infinite or finite (but non-trivial) offshoots. The remaining 5 trees 

are equivalent to 2 state models with additional (finite) structure around the root.  

None of the models with two branching states had features that were observed in the ureteric tree data, 

although domain branching models may be of interest for modelling other structures such as the lung.  
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SUPPLEMENTARY FIGURES 

 

 

Supplementary Figure 1: Comparison of the best half delay model fit against variation between samples, 

within each stage and clade, showing that the model lies at the center of the natural variation. For each 

of the six developmental stages and six clade types, the corresponding set of clades was isolated from the 

wild type ureteric tree data. Clades which had not developed beyond a single tip were discarded (10 of 42 

at stage 7 and 1 of 36 at stage 8). For each such set of clades, the half-delay model tree with the best 

average matching to the set was added (see Fig. 3A for definition of matching score). Then for each real 

or model tree, the average matching score with the other members of its set was calculated, and this 

metric was used to compare the model (red) against the real samples (blue). In 29 of 36 cases the half 

delay model has highest or equal highest average matching score, indicating that the model is closer to 

the sample clades on average than are any of the individual samples to the others; in the remaining 7 

cases the model is surpassed by only small margins. A small amount of random horizontal permutation 

has been added to points in the plot to enable points with equal matching score to be distinguished.  
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Supplementary Figure 2: Weight 16 and 21 subtree frequency in wild type time series dataset. In each 

case the highlighted tree is the centroid of the set (most representative structure, determined by 

maximum mean matching score with the other members of the set), and is also the half-delay tree of the 

given weight. 
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Supplementary Figure 3: Mutant phenotypes compared to tip-number matched wild type controls in 

terms of (A) surface area per tip; (B) balance, averaged over the binary branch points in each tree. 

Compare to Fig. 6F, Fig. 7A. Alternative control groups are to show that mutant differences are not an 

artefact of generally delayed development. Each plot shows estimated median change from wild type 

(dashed line) with 95% confidence interval, using a Wilcoxon rank sum test on the kidney level metrics. 

For A, values were first log transformed, and the estimates presented as proportional change. Control / 

test group sizes are: Tgfb2+/- 12/4; Bmp7-/- 12/9; Spry1-/- 12/3. 

Supplementary Figure 4: Mean balance of kidneys in mutant and control groups. Control / test group 

sizes are: Tgfb2+/- (E14.5) 5/4; Bmp7-/- (E14.5) 12/9; Spry1-/- (E13.5) 12/3. Comparison is to same-age 

wildtype controls. 
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Movie 1: Ureteric trees from mutant Tgfb2+/- (A), Bmp7-/- (B) and Spry1-/- (C) embryos (top row) compared 

with wild type controls (middle row) and alternative wild type comparison kidneys matched by tip number 

(bottom row). 
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