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Correction: Prdm16 is crucial for progression of the multipolar
phase during neural differentiation of the developing neocortex
Mayuko Inoue, Ryota Iwai, Hidenori Tabata, Daijiro Konno, Mariko Komabayashi-Suzuki, Chisato Watanabe,
Hiroko Iwanari, Yasuhiro Mochizuki, Takao Hamakubo, Fumio Matsuzaki, Koh-ichi Nagata and Ken-ichi Mizutani

There was an error published in Development 144, 385-399.

In the data availability section, the accession information for the microarray data was incomplete. The full information is as follows:
Microarray data have been deposited at ArrayExpress under accession numbers E-MTAB-5438 and E-MTAB-5646.

The authors apologise to readers for this mistake.
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polyadenylation element-binding protein 1 have brain-specific
dysfunctional mitochondria and reduced ATP levels due to
defective translation of NADH dehydrogenase ubiquinone
flavoprotein 2 (NDUFV2) mRNA (Oruganty-Das et al., 2012).
Moreover in utero suppression of NDUFV2 reportedly arrested
neuronal migration and impaired the multipolar-bipolar transition,

suggesting that the regulation of mitochondrial function andmetabolic
state is crucial for multipolar migration (Chen et al., 2015).

Numerous transcription networks contribute to the regulation of
cellular and mitochondrial metabolism; the PGC1 family of
transcriptional co-activators have recently emerged as central
regulators of metabolism (Austin and St-Pierre, 2012) and

Fig. 8. Both Prdm16 and NeuroD1
regulate PGC1� activity. (A) Reporter
constructs designed to express firefly
luciferase in response to PGC1α or
PGC1αΔIRE were transfected into
Neuro2a cells in the presence or
absence of Prdm16 or NeuroD1
overexpression; ***P<0.0001; n=9
independent experiments. (B) IUE of
the sh-Prdm16 plasmid with the
PGC1α expression plasmid at E12.5
were analyzed 72 h later. Scale bar:
100 µm. The cortex was divided into
five bins, and the percentage of EGFP-
positive cells was quantified; *P<0.01,
***P<0.0001; n=12 independent
sections. (C) Quantitative analysis of
endogenous mtROS levels in each
condition in primary neural progenitor
cultures from E14.5 neocortex;
*P<0.01, ***P<0.0001; n=7
independent experiments.
(D) Reporter constructs were designed
to express firefly luciferase in response
to NeuroD1 and were transfected into
neocortical progenitors in the presence
or absence of PGC1α knockdown
vectors; *P<0.01, ***P<0.0001; n=5
independent experiments.
(E) Schematic illustration of the
function of Prdm16 during neocortical
development. Both Prdm16 and
NeuroD1 positively and negatively
regulate PGC1α activity and correlate
with dynamic changes in mtROS
during transition of progenitors into
postmitotic multipolar cells. In normal
progenitors, Prdm16 activates
NeuroD1 and NeuroD1 represses
Prdm16. This negative-feedback
regulation is important for proper
morphological transition. However,
PGC1α represses NeuroD1 to prevent
premature expression in progenitors.
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positive regulators of mitochondrial biogenesis, gluconeogenesis
and various other metabolic processes (Handschin and Spiegelman,
2006). Therefore, PGC1α-mediated control of global oxidative
metabolism is an emerging concept. Accordingly, lowered
oxidative metabolism was associated with decreased PGC1α
activity in Prdm16 knockdown cells, and may be accompanied by
decreased mtROS levels. PGC1α and Prdm16 are transcriptional
co-activators that are involved in the control of energy metabolism,
and their ectopic expression in white adipose tissue induces the
acquisition of brown adipose tissue features (Hondares et al., 2011;
Ohno et al., 2012; Ringholm et al., 2013). A recent study suggested
that Sirt1 deacetylates PPARγ during energy deprivation and
deacetylated PPARγ then interacts with Prdm16 to alter the balance
from energy storage to energy expenditure (Qiang et al., 2012).
Moreover, overexpression of PGC1α suppresses NeuroD1 mRNA
expression in isolated rat and human islets (Kim et al., 2016).
Similarly, we found that deletion of IRE abolished the regulation of
PGC1α by Prdm16, suggesting that Prdm16 directly binds the
PGC1α promoter region. We also demonstrated that PGC1α is
positively or negatively regulated by both Prdm16 and NeuroD1,
leading to altered mtROS levels. Furthermore, we found that
PGC1α overexpression partially rescues mtROS levels in Prdm16
knockdown cells. Finally, the mtROS inhibitor and the PGC1α loss-
of-function plasmid suppressed NeuroD1 activity, thus preventing
premature expression of NeuroD1 in progenitors. Thus, we suggest
that the transition from progenitors to multipolar cells involves
dynamic changes in the cellular energy demands of the underlying
mtROS environment, depending on changes in expression from
Prdm16 to NeuroD1.
To our knowledge, the present data are the first to correlate

mtROS regulation with neural differentiation during neocortical
development. Our principal finding is that appropriate neural
differentiation is highly correlated with changes in mtROS levels,
which are partially regulated by the sequential expression of
Prdm16 and NeuroD1. Our results suggest an important role of
dynamic changes in the cellular redox environment during neural
differentiation, which is essential for the proper assembly of the
neocortex.

MATERIALS AND METHODS
Mice
In vivo experiments were performed in strict accordance with the
recommendations in the Guide for the Care and Use of Laboratory
Animals of the Doshisha University, Japan. The protocol was approved by
the Committee on the Ethics of Animal Experiments of the Doshisha
University. ICR mice were obtained from Shimizu Laboratory Supplies
(Kyoto, Japan) and Tg(NeuroD1::GFP) bacterial artificial chromosome
(BAC) transgenic mice were obtained from the GENESAT project at the
Rockefeller University (NY, USA).

Plasmid construction
Prdm16 shRNA plasmid (psh-Prdm16, supplementary Materials and
Methods) was kindly provided by Dr S. Kajimura (UCSF) (Ohno et al.,
2012). Full-length Prdm16 cDNA clones were purchased from Addgene
(catalogue number 15503). For the generation of expression plasmids,
amplified Prdm16 cDNA (pCAG-Prdm16) and deletion mutants of Prdm16
(pCAG-Prdm16ΔPR, ΔcZF and ΔnZF) were inserted into pCAG-FLAG-
IRES. The shRNA plasmids were generated by inserting annealed
oligonucleotides into pSuper.retro.Puro vector, as previously described
(Inoue et al., 2014). Target sequences were as follows: 5′-GCGAGGGC-
AAGAACCATTACA-3′ for psh2-Prdm16, 5′-GCTGCTTGACTATCAC-
ATACA-3′ for psh-NeuroD1, 5′-GTCAAACAAATGGTGGTTTGT-3′ for
psh2-NeuroD1, 5′-GCGACCAATCGGAAATCATAT-3′ for psh2-PGC1α,
and 5′-GCAATAAAGCGAAGAGCATTT-3′ for psh2-PGC1α.

In utero electroporation
Pregnant dams among wild-type ICR mice were anesthetized by
intraperitoneal injection with pentobarbital. Two microliters of a mixture
of plasmid DNA, which includes 2.5 mg/ml target plasmid and 0.8 mg/ml
reporter plasmid, and 2 mg/ml Fast Green were directly injected into the
lateral ventricles of the embryonic forebrain using a glass micropipette.
Electroporation was performed using an electroporator (CUY21E, Nepa
Gene) as previously described (Mizutani and Saito, 2005; Mizutani et al.,
2007; Inoue et al., 2014, 2015; Yamanishi et al., 2015). The following
plasmids were used in this study: pCAG-EGFP, pCAG-mCherry, pCAG-
Prdm16, psh-Prdm16, psh2-Prdm16, pNeuoD1p-mCherry, psh-NeuroD1,
pCAG-PGC1α, pCAG-FloxP-EGFP-N1 and pCAG-Cre.

Immunohistochemistry
Embryos were dissected, and the brains were fixed in 4% paraformaldehyde
(PFA) for 1-3.5 h. For the postnatal stage, brains were fixed in 4% PFA
overnight. Following 30% sucrose replacement, fixed brains were embedded
in OCT compound (Sakura Tissue-Tek). The antibodies used are listed in
Table S1. Immunostained sections were imaged on Zeiss LSM 710 or
Olympus IX81. For details, see supplementary Materials and Methods.

Microscopy and imaging analysis
Images were acquired on a confocal microscope (LSM 710, Zeiss) or a
fluorescent microscope (IX81, Olympus). ZEN and Metamorph softwares
were used to acquire all confocal and fluorescent microscope images,
respectively. Images were finally processed using Adobe Photoshop. 3D
image processing and analysis were performed with Imaris (Bitplane). For
quantification of multipolar cells around MAZ and IZ, we used a
combination of molecular markers and cellular morphology. In our
previous studies (Tabata and Nakajima, 2003; Tabata et al., 2009, 2012,
2013), we found that multipolar cells in the MAZ/IZ frequently had a long
ascending process and a retraction bulb, representing STL morphology.
These cells tended to be tangentially aligned and assumed typical multipolar
cell morphology with tangentially oriented thin multiple processes. For
details, see supplementary Materials and Methods.

Quantitative real-time PCR (qPCR)
qPCR was performed using SYBR Green labeling (SYBR Premix Ex TaqII,
Takara) and a TP850 Real-Time PCR System (Takara). For details, see
Table S2 and supplementary Materials and Methods.

DNA microarray analysis
Procedures were performed as previously described (Inoue et al., 2014). For
details, see supplementary Materials and Methods.

Cell culture, in vitro electroporation, and mtROS quantification
Embryonic neocortical cells were isolated fromE14.5wild-typemice, followed
by TrypLE Express (Gibco) treatment and trituration to generate a single-cell
suspension. Plasmid DNAwas introduced into primary neocortical cells using
Neon Transfection System (Life Technologies). Next, neocortical neurospheres
were cultured in serum-free media containing B27 without vitamin A (Gibco),
N2 supplement (Gibco) and 10 ng/ml basic FGF, as previously described
(Mizutani et al., 2007). Neuro2a cells were maintained in Dulbecco’s modified
Eagle’s medium supplemented with 10% fetal bovine serum, 1% non-essential
amino acids, 100 U/ml penicillin and 10 µg/ml streptomycin (Wako). mtROS
levels were measured by incubating 2×106 cells with 5 µM MitoSox (Life
Technologies) for 15 min at 37°C and analyzed using FACS.

Cell sorting
FACS analysiswas performed using FACSAria II and analyzed using FACSDiva
6.1 software (Becton Dickinson). The sorted cells were collected in TRIzol (Life
Technology). For details, see supplementary Materials and Methods.

Luciferase assay
A luciferase reporter assay was performed using E14.5 primary neocortical
culture or Neuro2a cells. For details, see supplementary Materials and
Methods.
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Time-lapse imaging
E13.5 or E14.5 embryos were electroporated with pSuper-Retro-Puro
(control), CAF-Prdm16 or sh-Prdm16 (2.5 μg/μl) together with pCAG-
EGFP (0.8 μg/μl). Organotypic coronal brain slices (250 μm) from the level
of interventricular foramen were prepared 42 h after electroporation with a
vibrating microtome (HM650 V; Thermo Fisher Scientific) in Hanks’
balanced salt solution (Wako), placed on an insert membrane (Millipore)
and cultured in Neurobasal medium (Thermo Fisher Scientific)
supplemented with 10% fetal bovine serum and 2% B27 (Thermo Fisher
Scientific) as described previously (Tabata and Nakajima, 2003). The dishes
were then mounted in CO2 incubator chamber (Tokai Hit, 5% CO2, 40%O2)
fitted onto an Olympus FV1000 confocal laser microscope. The dorsolateral
region of the neocortex was observed. For details, see the supplementary
Materials and Methods.

Statistical analysis
Statistical analysis was performed using Microsoft Excel. Student’s t-test as
stated in the appropriate experiments was used to test the significance.
P<0.01 was considered to be statistically significant. Error bars indicate the
s.e.m.
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