Enthesis regeneration: A role for Gli1+ progenitor cells - SUPPLEMENTAL FIGURES - Andrea G. Schwartz¹ Leesa M. Galatz² Stavros Thomopoulos*,3,4 ¹Department of Orthopaedic Surgery Washington University, St. Louis, MO ²Department of Orthopaedic Surgery Icahn School of Medicine at Mount Sinai Hospital Mount Sinai Health System, New York, NY *Corresponding author ³Department of Orthopedic Surgery ⁴Department of Biomedical Engineering Columbia University, New York, NY 10032 sat2@columbia.edu **Figure S1.** Ki67 staining (purple) was associated with clusters of Gli1Cre^{ERT2}-positive cells (green) at the mature healing enthesis, demonstrating that the small number of Gli1+ cells that remain in the mature enthesis were able to respond to injury. Scale = $100 \mu m$. **Figure S2.** ScxCre mice were crossed with Smo^{fl/fl} mice to delete Hh signaling in tendon and enthesis cells. Adult ScxCre;Smo^{fl/fl} mice (CKO; B,D,F) had impaired healing and a reduction of enthesis cellularity 6 weeks after injury sustained on P42 compared to wild type (WT) mice (A,C,E). Ki67 staining was reduced in CKO mice compared to WT mice. Scale = $100 \mu m$., N=7-8 per group.