Enthesis regeneration: A role for Gli1+ progenitor cells

- SUPPLEMENTAL FIGURES -

Andrea G. Schwartz¹ Leesa M. Galatz² Stavros Thomopoulos*,3,4

¹Department of Orthopaedic Surgery Washington University, St. Louis, MO

²Department of Orthopaedic Surgery Icahn School of Medicine at Mount Sinai Hospital Mount Sinai Health System, New York, NY

*Corresponding author

³Department of Orthopedic Surgery

⁴Department of Biomedical Engineering
Columbia University, New York, NY 10032

sat2@columbia.edu

Figure S1. Ki67 staining (purple) was associated with clusters of Gli1Cre^{ERT2}-positive cells (green) at the mature healing enthesis, demonstrating that the small number of Gli1+ cells that remain in the mature enthesis were able to respond to injury. Scale = $100 \mu m$.

Figure S2. ScxCre mice were crossed with Smo^{fl/fl} mice to delete Hh signaling in tendon and enthesis cells. Adult ScxCre;Smo^{fl/fl} mice (CKO; B,D,F) had impaired healing and a reduction of enthesis cellularity 6 weeks after injury sustained on P42 compared to wild type (WT) mice (A,C,E). Ki67 staining was reduced in CKO mice compared to WT mice. Scale = $100 \mu m$., N=7-8 per group.