Figure S1. No evidence for cell competition between $Fgfr2^{d/+}$ and $Fgfr2^{+/+}$ basal cells in vitro. (A) Experimental set-up in B. Freshly isolated basal cells were mixed at a 1:2 ratio, grown to confluence on cell culture inserts and imaged at intervals for 10 days. In cultures with no competition both cell populations will continue at the same ratio, whereas in cultures with competition the patch size of the "loser" cell population will decrease over time. (B) 0 and 240 hour frames from phase contrast/red channel time-lapse experiments. Upper panel: control experiment, red cells: $Fgfr2^{\Delta/+}$, unlabelled cells: $Fgfr2^{\Delta/+}$. Lower panel: competition experiment, red: $Fgfr2^{\Delta/+}$, unlabelled: $Fgfr2^{+/+}$. No evidence for competition was observed. (C) Experimental set-up in D. Freshly isolated basal cells were mixed at a 1:2 ratio, grown to confluence on cell culture inserts, mechanically wounded using a pipette tip and imaged at intervals for 5 days. In cultures with no competition labelled and unlabelled cells will contribute approximately equally to wound closure. In cultures with competition, the "loser" cell population will contribute less to wound closure. (D) 0 hour and 114 hour frames from phase contrast/red channel time-lapse experiments. Upper panel: control experiment, red cells: $Fgfr2^{\Delta/+}$, unlabelled cells: $Fgfr2^{\Delta/+}$. Lower panels: competition experiment, red cells: $Fgfr2^{\Delta/+}$, unlabelled cells: $Fgfr2^{+/+}$. No evidence for competition was observed. Bar = 0.5 mm in all panels. See also movies 1-5. Figure S2. Fgfr2 conditional heterozygous basal cells can proliferate and show no evidence of apoptosis. (A) Sections from control Tg(KRT5-CreER); Rosa26R^{fGFP/+} and cHet Tg(KRT5-CreER); Rosa26R^{fGFP/+}; Fgfr2^{fx/+} tracheae at 1.5 and 24 weeks post-tmx. Green: GFP (Rosa reporter); red: KI67 (proliferating cells); blue: DAPI (nuclei). Arrowheads mark KI67 positive cells. (B) Quantitation of the percentage of GFP⁺ cells that co-express KI67 throughout the experimental timecourse. Error bars = sem. (C) Sections from control Tg(KRT5-CreER); Rosa26R^{fGFP/+} and cHet Tg(KRT5-CreER); Rosa26R^{fGFP/+}; Fgfr2^{fx/+} tracheae at 5 weeks post-tmx. Green: GFP (Rosa reporter); red: Cleaved Caspase-3 (apoptotic cells); blue: DAPI (nuclei). (D) Section of E18.5 Glucocorticoid receptor null lung (GR^{-/-}, also known as Nr3c1) as a positive control for Cleaved Caspase-3 staining. Green: E-cadherin (lateral membranes); red: Cleaved Caspase-3 (apoptotic cells); blue: DAPI (nuclei). Scale bar = 50 μm in all panels. Figure S3. Fgfr2 conditional heterozygous tracheal cells fail to terminally differentiate and self-renew in vitro (A) Experimental schematic. Control ($Rosa26R^{IGFP/IGFP}$) and cHet ($Rosa26R^{IGFP/+}$; $Fgfr2^{fx/+}$) tracheal epithelial cells were seeded in BC expansion conditions and infected with Ad-Cre at day 2. On day 4 BCs were passaged onto new collagen-coated inserts for further expansion and ALI differentiation. (B) cHet BCs attach and proliferate post-passaging on collagen-coated inserts. (C, D) Control cultures form fully-differentiated monolayers containing multiciliated cells (C) and differentiated BCs (D) by 12 days post-seeding, but cHet BCs do not reach confluence and do not express differentiated markers in vitro. Arrows: fragmented nuclei, or multi-nucleate cells, seen in cHet cultures, but not controls. (E) Experimental schematic. Control ($Rosa26R^{IGFP/IGFP}$) and cHet ($Rosa26R^{IGFP/+}$; $Fgfr2^{fx/+}$) tracheal epithelial cells were seeded in BC expansion conditions and infected with Ad-Cre at day 2. On day 4 BCs were passaged into matrigel for sphere-forming assays. (F) Representative confocal sections of control and Fgfr2 cHet cultures 2 days post-seeding in matrigel. Green: KRT8; red: KRT5. (G) Images of control and Fgfr2 cHet tracheospheres 9 days post-seeding in matrigel. (H) Tracheosphere diameter, arbitrary units. Scale bars = 100 μ m (B-D, G); 5 μ m (F). Figure S4. Decrease in FGFR2 signalling in vitro does not affect levels of MEK-ERK signalling. (A) Schematic of in vitro experimental time-course. (B) Representative genotyping (gDNA) PCR from $Rosa26R^{fGFP/fGFP}$ and $Rosa26R^{fGFP/+}$; $Fgfr2^{fx/+}$ viral-infected cells at day 6. Note that the cHet cells have efficient amplification of the wild-type (wt) and deleted (Δ) alleles, but very little amplification of the floxed (fx) allele indicating high levels of recombination in vitro. (C) Representative western blots from control and Fgfr2 cHet day 6 basal cells showing levels of SOX2, pERK1/2, total ERK and Histone H3. (F) Quantification of protein levels in (E). % total epithelial cells which are basal % luminal cells which are ciliated Figure S5. $Fgfr2^{A/+}$ adult mice have a normal tracheal epithelium. (A) Representative sections from control $Rosa26R^{fGFP/fGFP}$ and sibling $Rosa26R^{fGFP/fGFP}$; $Fgfr2^{A/+}$ tracheae. Green: SCGB1A1 (secretory cells); red: T1 α (basal cells); white: acetylated tubulin (cilia); blue: DAPI. (B) Quantitation of the percentage of epithelial cells which are basal, and luminal cells which are ciliated in the two genotypes. Error bars = sem. Scale bar = 20 μ m. Fig. S6. Raw cell counts | Fgfr2 conditional | l heterozygous cell counts | Figure S2 | | | | | Fi | igure 1 | | | | | | - | | | | | | | | | | | | |--------------------|--|--|---------------------------------|--------------------------|--|------------------------------------|----------------------------------|---|---------------------------------|---------------------------------|---------------------------------|---|--|---------------------------------|----------------------------|-------------|-------------------------|--------------------------------------|------------------------------|----------------------------------|------------------------------|---|--------------------------------------|---|--| | 1.5 week | | Total DAPI+ Tota
cells cells | | | GFP+ % of total GFP+ cel
dual GFP+, KI-67+ | | To | | | ,GFP+ T1a- | | asal cells that % of total lun | ninal T1a- cells that | | | | | | | | | | | | | | 1
2
3 | KRTS-CreER/+; R26-fGFP/+
KRTS-CreER/+; R26-fGFP/+
KRTS-CreER/+; R26-fGFP/+ | 1033
1469
1024 | 64
96
228 | 6
24
6 | 0
1
2 | 0.0
1.0
0.9 | Can Can | 1164
1907
1573 | 564
934
789 | 80
201
307 | 1
5
7 | 14.18
21.52
38.91 | 0.17
0.51
0.89 | | | | | | | | | | | | | | 4
5
6 | KRTS-CreER/+; R26-fGFP/+; Fgfr2 fx/+
KRTS-CreER/+; R26-fGFP/+; Fgfr2 fx/+
KRTS-CreER/+; R26-fGFP/+; Fgfr2 fx/+ | 1523 | 25
203
285 | 3
87
48 | 1
18
9 | 4.0
8.9
3.2 | | 648
1607
1472 | 238
677
752 | 82
221
241 | 493
325
341 | 34.45
32.64
32.05 | 0.49
0.97
0.14 | | | | | | | | | | | | | | 5 weeks
post-tm | x | cells cells | cel | ls cells | GFP+ % of total GFP+ cel
dual GFP+, KI-67+ | | To | ils cells | | cells | s are dual GFP+, T1 | | | basal cells lun | ninal K8 | - cells K8+ | +, KS+, % GFP+ c | | club cells go | P+, MUCSAC+ GFP
plet cells MU | SAC- cells MUCSA | CGB1A1+, % GFP+ co
C+ cells SCGB1A1+ | club cells SCG | FP+ cells which are GFP+, %
B1A1-, MUCSAC- cells G | 6 GFP+ cells which are
GFP+, SCGB1A1+, MUCSAC | | 1
2
3
4 | KRTS-CreER/+; R26-fGFP/+
KRTS-CreER/+; R26-fGFP/+
KRTS-CreER/+; R26-fGFP/+
KRTS-CreER/+; R26-fGFP/+ | 1560
1228
1125
/ | 552
409
439
/ | 18
25
35
/ | 13
13
16
/ | 2.4
3.2
3.6
/ | | 1325
1444
1288
/ | 575
546
582
/ | 360
324
339
/ | 215
222
243
/ | 62.61
59.34
58.25
/ | 5.33
4.12
5.95 | 291
227
271 | 27
46
18
/ | 0 0 / | 10
2
5
/ | 10
10.2
11
/ | 196
139
76
51 | 0 0 | 259
238
184
202 | 0
0
0 | 43.1
36.9
29.2
20.2 | 56.9
63.1
70.8
79.8 | | | 5
6
7
8 | KRTS-CreER/+; R26-fGFP/+; Fgfr2 fx/+
KRTS-CreER/+; R26-fGFP/+; Fgfr2 fx/+
KRTS-CreER/+; R26-fGFP/+; Fgfr2 fx/+
KRTS-CreER/+; R26-fGFP/+; Fgfr2 fx/+
KRTS-CreER/+; R26-fGFP/+; Fgfr2 fx/+ | 1071
970
1001 | 408
218
347
263
429 | 22
9
21
20
8 | 11
2
6
9
2 | 2.7
0.9
1.7
3.4
0.5 | | 1283
1149
1505
1451
1195 | 583
441
733
529
685 | 234
151
276
212
301 | 349
290
457
317
384 | 40.14
34.24
37.65
40.08
43.94 | 5.57
6.07
14.51
4.45
19.22 | 159
126
164
133
267 | 32
32
55
24
55 | 0
0
0 | 8
6
14
9
20 | 14.3
22.2
28.9
16.2
24.6 | 31
30
119
63
139 | 0
0
0
0 | 82
44
109
94
135 | 0
0
0
1
2 | 27.4
40.5
52.2
39.9
50.4 | 72.6
59.5
47.8
59.5
48.9 | 0 | | 24 week | | Total DAPI+ Tota | | | GFP+ % of total GFP+ cel | | To | | | ,GFP+ T1a-
cells | | asal cells that % of total lun | ninal T1a- cells that | | | | | | | | | | | | | | 1 2 3 | KRTS-CreER/+; R26-fGFP/+
KRTS-CreER/+; R26-fGFP/+
KRTS-CreER/+; R26-fGFP/+ | 1241
1155
1411 | 351
381
319 | 14
15
18 | 2 1 4 | 0.6
0.3
1.3 | C. | 1659
1155
1517 | 592
608
799 | 216
188
152 | 130
420
647 | 36.49
30.92
19.02 | 12.18
29.43
21.87 | | | | | | | | | | | | | | 4
5
6
7 | KRTS-CreER/+; R26-fGFP/+; Fgfr2 fx/+
KRTS-CreER/+; R26-fGFP/+; Fgfr2 fx/+
KRTS-CreER/+; R26-fGFP/+; Fgfr2 fx/+
KRTS-CreER/+; R26-fGFP/+; Fgfr2 fx/+ | 1341
1801 | 57
125
143
20 | 28
30
34
21 | 1
0
0 | 1.75
0.00
0.00
0.00 | | 1766
1081
1787
1940 | 587
472
710
829 | 7
32
31
9 | 580
440
679
820 | 1.19
6.78
4.37
1.09 | 3.39
8.21
11.23
1.35 | | | | | | | | | | | | | | Fgfr2 germline h | eterozygous cell counts | Figure S5
Total basal Tota
cells cells | | ner cells Total I | uminal % of total epithelia
which are basal | | al luminal cells | Rosa26R-fGFP; Fgft2+/+
Rosa26R-fGFP; Fgft2+/+
Rosa26R-fGFP; Fgft2+/+
Rosa26R-fGFP; Fgft2+/+ | 340
504
595
648 | 354
576
535
782 | 219
417
479
424 | 416
783
862
939 | 44.97
39.16
40.84
43.63 | 61.78
58.01
52.76
50.82 | Rosa26R-4GFP; Fgft2D/+
Rosa26R-4GFP; Fgft2D/+
Rosa26R-4GFP; Fgft2D/+
Rosa26R-4GFP; Fgft2D/+ | 592
583
716
548 | 497
513
755
635 | 481
438
555
375 | 765
752
874
695 | 40.83
43.67
45.03
44.09 | 64.84
53.94
57.63
62.87 | Fgfr2 in vitro cel | I counts | Figure 3
K5+, K8- K5-,
cells | K8+ cells K5- | | 3- cells % of total cells whi | ich are KS+, % of tota
KS-, K8+ | | of total cells whi | ch are | | | | | | | | | | | | | | | | | | | Rosa26R+fGFP/ Rosa26R+fGFP
Rosa26R+fGFP/ Rosa26R+fGFP
Rosa26R+fGFP/ Rosa26R+fGFP | 1107
814
1001 | 670
797
297 | 337
424
124 | 7
10
0 | 52.2
60.4
70.4 | 31.6
28.8
20.9 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 15.9
10.5
8.7 | | | | | | | | | | | | | | | | | | | Rosa26R-fGFP/+; Fgfr2fx/+
Rosa26R-fGFP/+; Fgfr2fx/+
Rosa26R-fGFP/+; Fgfr2fx/+ | 996
813
570 | 476
930
564 | 174
521
461 | 5
18
3 | 39.8
35.6
35.7 | 39
40.8
35.3 | | 20.7
22.8
28.8 | | | | | | | | | | | | | | | | | ## **Movies** **Movie 1. In vitro cell competition at confluence, control culture.** Red cells: $Fgfr2^{\Delta/+}$, unlabelled cells: $Fgfr2^{\Delta/+}$. Confluent culture imaged every 4 hours for 10 days in a Nikon Biostation. Cell clones do not change in size; no evidence for cell competition. Movie 2. In vitro cell competition at confluence, experimental culture. Red cells: $Fgfr2^{\Delta/+}$, unlabelled cells: $Fgfr2^{+/+}$. Confluent culture imaged every 4 hours for 10 days in a Nikon Biostation. Cell clones do not change in size; no evidence for cell competition. **Movie 3. In vitro cell competition following wounding, control culture.** Red cells: $Fgfr2^{\Delta/+}$, unlabelled cells: $Fgfr2^{\Delta/+}$. Confluent culture was wounded and then imaged every 2 hours for 5 days in a Nikon Biostation. Both cell populations expand into the wound equally; no evidence for cell competition. **Movie 4. In vitro cell competition following wounding, experimental culture 1.** Red cells: $Fgfr2^{\Delta/+}$, unlabelled cells: $Fgfr2^{+/+}$. Confluent culture was wounded and then imaged every 2 hours for 5 days in a Nikon Biostation. Both cell populations expand into the wound equally; no evidence for cell competition. Movie 5. In vitro cell competition following wounding, experimental culture 2. Red cells: $Fgfr2^{\Delta/+}$, unlabelled cells: $Fgfr2^{+/+}$. Confluent culture was wounded and then imaged every 2 hours for 5 days in a Nikon Biostation. Both cell populations expand into the wound equally; no evidence for cell competition. **Table S1. Antibodies** Primary antibodies used for immunostaining on tissue sections or cells | Protein | Species | Dilution | Antigen | Company | Order | |----------------------|---------|----------|------------|--------------|--------------| | | | Factor | Retrieval* | | number/clone | | Acetylated tubulin | Mouse | 1:3000 | No | Sigma | T7451 | | Cleaved
Caspase-3 | Rabbit | 1:100 | No | AbCam | ab2302 | | E-cadherin | Rat | 1:3000 | No | Thermofisher | 13-1900 | | FGFR2 | Rabbit | 1:200 | No | Santa Cruz | sc-122 | | GFP | Chick | 1:1000 | No | AbCam | AB13970 | | Keratin5 | Rabbit | 1:500 | No | Covance | PRB-160P | | Keratin8 | Rat | 1:200 | No | DSHB | TROMA-1 | | KI67 | Mouse | 1:200 | Yes | BD | 550609 | | MUC5AC | Mouse | 1:500 | No | Thermofisher | MS-145P0 | | SCGB1A1 | Goat | 1:400 | No | Santa Cruz | sc9772 | | SOX2 | Goat | 1:200 | No | Santa Cruz | clone Y-17 | | Τ1α | Hamster | 1:1000 | No | DSHB | 8.1.1 | ^{*}Antigen retrieval by boiling tissue sections in 10 mM sodium citrate, pH 8 for Ki67. Primary antibodies used for western blot | Protein | Dilution Factor | Company | Order | | | |----------------|------------------------|-----------------|--------------|--|--| | | | | number/clone | | | | p-Akt(S473) | 1:3000 | Cell Signalling | 3787 | | | | Akt (pan) | 1:1000 | Cell Signalling | 4691 | | | | dpErk1/2 | 1:300 | Cell Signalling | 4370 | | | | Erk1/2 (total) | 1:300 | Cell Signalling | 4695 | | | | SOX2 | 1:3000 | AbCam | ab97959 | | | | Histone H3 | 1:10000 | AbCam | ab39655 | | | | β-actin | 1:50000 | Sigma | A3854 | | | ## Fluorescent secondary antibodies All at 1:2000 from ThermoFisher Scientific (Molecular Probes) | mu 1.2000 mom memor | | |------------------------|--------| | Donkey anti-mouse 488 | A21202 | | Goat anti-chick 488 | A11039 | | Donkey anti-goat 488 | A11055 | | Donkey anti-rabbit 488 | A21206 | | Donkey anti-mouse 546 | A10036 | | Donkey anti-rabbit 546 | A10040 | | Donkey anti-goat 555 | A21432 | | Goat anti-hamster 568 | A21112 | | Donkey anti-rat 594 | A21209 | | Donkey anti-mouse 647 | A31571 | | Donkey anti-rabbit 647 | A31573 | | Goat anti hamster 647 | A21451 | | Goat anti-rat 647 | A21247 |