Development: doi:10.1242/dev.165688: Supplementary information

6000
~4—Col-0 flg22
® 5000
8 ~@-MBCD flg22
8 ~te=Col-0 H20
2 4000 —<MBCD H20
£
€
5 3000
4
g
2 2000
o
[0]
@ 1000

13 5 7 9 11 13 15 17 19 21 23 25 27 29
Time (min)

Fig. S1. MBCD affected flg22-induced ROS production.
In time-course experiments, ROS production was elevated under flg22 and
MBCD co-treatment compared to flg22 treatment (Values are means = SDs; n

= 4;three biological repeats).
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Fig. S2. Detection of the MAPKs phosphorylation in Arabidopsis thaliana in
response to flg22 in WT and smtl mutants. No phosphorylated MAPKs were

detected in the untreated sample (-).
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Mock flg22

.

Fig. S3. FIg22 induced callose deposition.

Col-0

smt1

Callose deposition in 2-week-old leaf tissue of the WT and the smtl mutants at

24 hr after infiltration with flg22. Representative images are shown depicting

differences in callose deposition between Col-0 and smtl mutants under mock
and flg22 treatments. Scale bar = 0.5 mm (Untreated, n = 9 images; flg22

treated, n= 12 images from two biological replicates).
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Fig. S4. Rescue of the fls2 mutant by a genomic sequence of FLS2 fused
with the GFP sequence in Arabidopsis leaves.

(A) Immunoblot analysis of total protein extracts from WT, fls2 (as a control)
and FLS2-GFP transgenic Arabidopsis seedlings probed with GFP and ACTIN
antibodies.

(B) Flg22-triggered (100 nM) ROS burst in Col-0, fls2, and pFLS2:FLS2-GFP
transgenic seedlings. (Values are means + SDs; n = 4; two biological
repeats)

(C) Measurement of callose deposition in Col-0, fls2, and pFLS2:FLS2-GFP
transgenic seedlings using aniline blue staining under mock or 2 yM fig22
treatment for 24h. Bar =200 ym. (Untreated, n = 9 images; flg22 treated, n= 17

images pooled from two biological replicates)
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Fig. S5. Effects of MBCD treatment on the dynamic behavior of
FLS2-GFP.

(A) Distribution of motion ranges of FLS2-GFP spots under MBCD (n = 10811
spots), MBCD and flg22 co-treatment (n = 7738 spots), respectively.

(B) Frequency of long distance and short distance motions for FLS2-GFP
under different treatments. Error bars represent the SD. Statistical significance
was checked by Student’s t-test (*P <0.05).

(C) Distribution of diffusion coefficients of FLS2-GFP spots under MBCD (n =
12592 spots), MBCD and flg22 co-treatment (n = 9610 spots), respectively.
(D) Diffusion coefficients of FLS2-GFP spots under different treatments. Error
bars represent the SD. Statistical significance was checked by Student’s t-test

(*P <0.05 and **P < 0.01).
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FLS2-GFP

Fig. S6. Typical images showing diffraction-limited fluorescent spots of
FLS2-GFP on a fixed cell membrane of Arabidopsis leaf epidermal cells under
flg22 treatment and co-treatment with MBCD and flg22, imaged with TIRFM.
The image is a section of the first frame of a stack of images with the

background subtracted (Scale bar: 1 um).
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Fig. S7. Clathrin is required for FLS2 dynamics.

(A) Distribution of FLS2-GFP motion range under TyrA23 treatment (n = 14401
spots), TyrA23 and flg22 co-treatment (n = 11445 spots).

(B) Frequency of long distance and short distance motions for FLS2-GFP
under different treatments. Error bars represent the SD. Statistical significance
was checked by Student’s t-test (*P <0.05 and **P < 0.01).

(C) Distribution of FLS2-GFP diffusion coefficients under TyrA23 treatment (n
= 17147 spots), TyrA23 and flg22 co-treatment (n = 28319 spots).

(D) Diffusion coefficients of FLS2-GFP under different treatments. Error bars
represent the SD. Statistical significance was checked by Student’s t-test (*P

<0.05 and **P < 0.01).
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(E) Distribution of FLS2-GFP motion range in clc2-1 clc3-1 mutant (n = 9870
spots) and in clc2-1 clc3-1 mutant seedlings after flg22 (n = 11342 spots).

(F) Frequency of long distance and short distance motions for FLS2-GFP in
clc2-1 clc3-1 mutant. Error bars represent the SD. Statistical significance was
checked by Student’s t-test (*P <0.05 and **P < 0.01).

(G) Distribution of FLS2-GFP diffusion coefficients in clc2-1 clc3-1 mutant (n =
9311 spots) and in clc2-1 clc3-1 mutant seedlings after flg22 (n =
12776 spots).

(H) Diffusion coefficients of FLS2-GFP in clc2-1 clc3-1 mutant. Error bars
represent the SD. Statistical significance was checked by Student’s t-test (*P

<0.05 and **P < 0.01).
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Fig. S8. Clathrin is involved in flg22 induced FLS2 endocytosis.

In clc2-1 clc3-1 mutant, FLS2-GFP endosome numbers per image area in
response to flg22 treatments over time (n = three seedlings for each
treatment). Error bars represent the SD. Statistical significance was checked

by Student’s t-test (*P <0.05).
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FLS2-GFP

MBCD+BFA

MBCD+cholestrerol

Fig. S9. FLS2-GFP internalization is perturbed by MBCD.

(A) FLS2-GFP co-localized with FM4-64 at the plasma membrane.

(B) FLS2-GFP colocalized with FM4-64 in BFA compartment after BFA
treatment.

(C) MBCD reduced the BFA-induced intracellular accumulation of FLS2-GFP.

(D) The effects of sterol complement on FLS2 internalization. Cholesterol was
replenished in depleted cells by incubating them with MBCD-cholesterol

complexes.
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Fig. S10. Sterols are involved in flg22 induced FLS2 endocytosis.

(A) Confocal images of FLS2-GFP treated with flg22, MBCD, MBCD coupled
with flg22, or MBCD andMBCD-cholesterol complexes coupled with flg22 co-
treatment for 15, 30, and 60 min in Arabidopsis leaf epidermis, Bar = 2Qum.
(B) FLS2-GFP endosome numbers per image area in response to various
treatments over time (n = three seedlings for each treatment). Error bars
represent the SD. Statistical significance was checked by Student’s t-test (*P
<0.05 and **P < 0.01).

(C) Quantification of FLS2 endocytosis as estimated by the ratio of the
average signal intensity in the cytosol over that at the PM under different
conditions (n=33). Error bars represent the SD. Statistical significance was

checked by Student’s t-test (**P < 0.01).
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Fig. S11 Sterols are involved in flg22-induced FLS2 degradation.

(A) The density of FLS2-GFP molecules in the different treatments was
measured by FCS (n = 30 cells from five seedlings for each treatment).
Error bars represent the SD. Statistical significance was checked by Student’s
t-test (*P <0.05, **P < 0.01 and ***P < 0.001).

(B) Immunoblot analysis of FLS2 protein levels under flg22, flg22 and MBCD

co-treatment for 15, 30, and 60 min.
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B supp-1(1).mp4

Movie S1. VA-TIRFM imaging of FLS2-GFP spots at the PM of Arabidopsis
leaves epidermal cells. Movies of 100 frames were acquired; exposure time for

each frame was 100 ms.
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http://movie.biologists.com/video/10.1242/dev.165688/video-1
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B supp-2.mp4

Movie S2. VA-TIRFM imaging of FLS2-GFP spots at the PM of Arabidopsis
leaves epidermal cells after flg22 treatment. Movies of 100 frames were

acquired; exposure time for each frame was 100 ms.
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http://movie.biologists.com/video/10.1242/dev.165688/video-2
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B supp-3.mp4

Movie S3. VA-TIRFM imaging of FLS2-GFP spots in pFLS2:FLS2-GFP

transgenic seedlings in the smtl background. Movies of 100 frames were

acquired; exposure time for each frame was 100 ms.
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B supp-4.mp4

Movie S4. VA-TIRFM imaging of FLS2-GFP spots in Arabidopsis leaves
epidermal cells treated with 10 mM MBCD. Movies of 100 frames were

acquired; exposure time for each frame was 100 ms.
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