
Supplemental Table S1

Table S1. Primer	informati	on	
For genotyping		5' ->3'	
Pcgf3	P1	ATAAGATGAGATGGGATGGGC	
	P2	ACGCCTCCAGGTGATCCATAC	
Pcgf5	P1	TGTTTACAGAGAGGAAGCGCC	
	P2	TGGCCTTGGTACACATATAGC	
For ChIP-qPCR		5' ->3'	
Meis1	Previously described in Yakushiji-Kaminatsui et al., 2016		
Meis2			
Hoxa11 promoter	Forward	CTCGCACCTTGTACCCTGAT	
	Reverse	GATGCCGATTGCGTTTAGTT	
Hoxa13 promoter	Forward	TCCTGGAACCAACAGGAAAC	
	Reverse	TGGCATGTTTTAGGGACCTC	
Pitx2 promoter	Forward	ATTTCTCCAGGAGCCATTTG	
	Reverse	ACTCTCTGTCGTCGGGAGTC	

Supplemental Table S2

Dataset	Accession number	Reference
E11.5, forelimb proximal, RING1B	GSM1716759	Yakushiji-Kaminatsui et al., RING1 proteins contribute to early proximal-distal specification
E11.5, forelimb distal, RING1B	GSM1716760	of the forelimb bud by restricting Meis2 expression, 2016 Development 143, 276-285.
MV-4-11, Vehicle 1, RARA WCE	SRX2705416	
MV-4-11, Vehicle 2, RARA WCE	SRX2705415	
MV-4-11, Vehicle 1, RARA IP	SRX2705441	
MV-4-11, Vehicle 2, RARA IP	SRX2705440	
MV-4-11, Treated 1, RARA WCE	SRX2705418	
MV-4-11, Treated 2, RARA WCE	SRX2705417	
MV-4-11, Treated 1, RARA IP	SRX2705443	
MV-4-11, Treated 2, RARA IP	SRX2705442	
/IV-4-11, Vehicle 1, H3K27ac WCE	SRX2705477	McKeown et al., Superenhancer Analysis Defines Novel Epigenomic Subtypes of Non-
MV-4-11, Vehicle 2, H3K27ac WCE	SRX2705476	APL AML, Including an RARα Dependency Targetable by SY-1425, a Potent and Selectiv
MV-4-11, Vehicle 3, H3K27ac WCE	SRX2705474	RARα Agonist, 2017 Cancer Discov. 10, 1136-1153.
MV-4-11, Vehicle 1, H3K27ac IP	SRX2705454	
MV-4-11, Vehicle 2, H3K27ac IP	SRX2705453	
MV-4-11, Vehicle 3, H3K27ac IP	SRX2705450	
MV-4-11, Treated 2, H3K27ac WCE	SRX2705478	
MV-4-11, Treated 3, H3K27ac WCE	SRX2705475	
MV-4-11, Treated 2, H3K27ac IP	SRX2705455	
MV-4-11, Treated 3, H3K27ac IP	SRX2705452	
MV-4-11, Treated 4, H3K27ac IP	SRX2705451	

Supplemental Figures

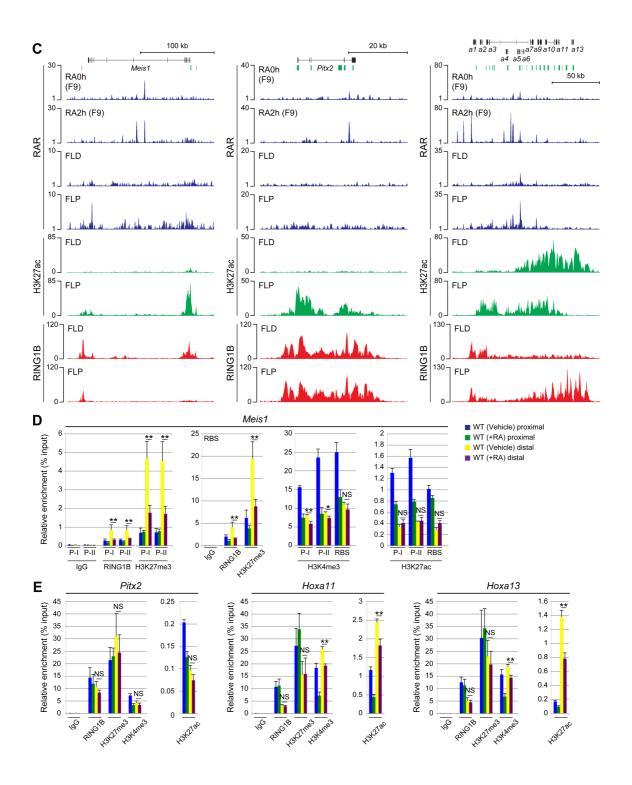


Fig. S1 (related to Fig. 1). Effects of either SY-1425 (tamibarotene) or ATRA on RARα, histone modification and RING1B activities in human MV4-11 cells or mouse forelimb buds at E10.5.

(A) ChIP-seq showing the level of RARA and H3K27ac at *Meis2* locus in MV4-11 cells treated with vehicle or SY-1425, a selective RARa agonist (treated). The difference in the normalized number of reads between the vehicle- and SY1425-treated is shown by negative (gray) and positive (black), respectively (tracks 3 and 6). (B) Scatter plots representing the logarithmic ratio of normalized read counts between SY-1524 stimulated and vehicle-treated MV4-11 cells (top). The alterations in enrichments of H3K27ac and RAR by SY-1425 treatment showed a positive correlation. Overlaps between peaks of RAR and H3K27ac that had significantly enriched and at least more than 2 times reads as compared with whole cell extract (bottom). (C) Distribution of RAR, H3K27ac and RING1B at the Meis1 (left), Pitx2 (middle) and HoxA (right) locus in F9 cells (0 hour with only vehicle (RA0h)) and 2 hours after RA stimulation (RA2h), E11.5 proximal (FLP) and distal (FLD) forelimb buds revealed by ChIP-seq analysis. (D, E) ChIP-qPCR analysis showing the levels of RING1B, H3K27me3, H3K4me3 and H3K27ac at the TSS and RBS of the Meis1 (D) and the promoters of Hoxal1, Hoxal3 and Pitx2 (E) in the proximal and distal regions of E10.5 forelimb buds from wild type (vehicle) and ATRAtreated wild type (+RA) embryos. Error bars indicate s.e.m. of two or three biological replicates. **P<0.01, *P<0.05, NS>0.05, Student's t-test. Enrichment of ChIP-seq (Yaxis) in (A) and (C) is shown as the normalized depth of coverage.

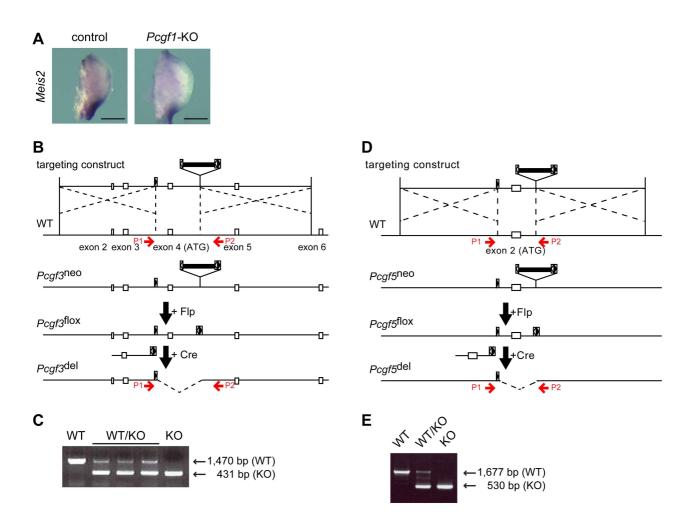


Fig. S2 (related to Fig. 3). *Meis2* expression in *Pcgf1*-KO forelimb buds and Generation of *Pcgf3/5* mutants. (A) *Meis2* expression in control (*Pcgf1*^{fl/fl}) and *Pcgf1*-KO forelimb buds at E10.5. Scale bar, 250 μ m. (B) Schematic representation of gene targeting strategy to delete *Pcgf3*. Targeting construct to generate the *Pcgf3*^{neo} allele harbors a Neomycin resistant gene cassette (indicated by bold bars), two loxP sites (indicated by closed triangles) and two FRT (open triangles) sites. The Neomycin resistant gene cassette was removed by mating *Pcgf3*^{neo/+} with FLP deleter line (CAG-FLP) to generate the *Pcgf3*^{flox} allele. The *Pcgf3*-KO allele was generated by deleting the 4th exon of *Pcgf3* by crossing mice carrying *Pcgf3*^{flox} with CAG-Cre mouse strain. The *Pcgf3* mutant line was maintained as heterozygotes and KO mice were obtained by mating *Pcgf3*^{+/-} female with *Pcgf3*^{+/-} male. Genomic positions of PCR primers (P1 and

P2) used for genotyping are indicated by red arrows. (C) PCR analysis to distinguish the wild type (WT), $Pcgf3^{+/-}$ (WT/KO) and $Pcgf3^{-/-}$ (KO). (D) Schematic representation of gene targeting strategy to delete Pcgf5. Targeting construct to generate the $Pcgf5^{neo}$ allele harbors a Neomycin resistant gene cassette (indicated by bold bars), two loxP sites (indicated by closed triangles) and two FRT (open triangles) sites. The Neomycin resistant gene cassette was removed by mating $Pcgf5^{neo/+}$ with FLP deleter line (CAG-FLP) to generate the $Pcgf5^{flox}$ allele. The $Pcgf5^{flox}$ allele was generated by deleting the 2nd exon of Pcgf5 by crossing mice carrying $Pcgf5^{flox}$ with CAG-Cre mouse strain. The Pcgf5 mutant line was maintained as heterozygotes and KO mice were obtained by mating $Pcgf5^{+/-}$ female with $Pcgf5^{+/-}$ male. Genomic positions of PCR primers (P1 and P2) used for genotyping are indicated by red arrows. (E) PCR analysis to distinguish the wild type (WT), $Pcgf5^{+/-}$ (WT/KO) and $Pcgf5^{-/-}$ (KO).