

Fig. S1. Characterization of PXY/TDR and SMXL5 promoter activities.
Maximum intensity projection of confocal images of PXYpro:CFP;SMXL5pro:YFP hypocotyl cross sections at 21 dag. Size $=50 \mu \mathrm{~m} . \mathrm{n}=2$.

WOX4pro:ER-YFP


Differentiated Xylem
$L$


Fig. S2. Characterization of WOX4 promoter activities.
Maximum intensity projection of confocal images of a hypocotyl cross section from a WOX4 ${ }_{\text {pro }}$ :ER-YFP marker line at 21 dag. Cell walls are visualized by Direct Red 23 (in red). Size $=50 \mu \mathrm{~m}$. The hypocotyl center is located left.


Fig. S3. Full images of cell lineage analyses shown in Fig. 3.
Maximum intensity projections of confocal images of cross sections of Dex-induced hypocotyls. $P X Y_{\text {pro }}: L h G R-N ; O p 4_{\text {pro }}:$ Cre;;; $M L 988$ (labeled as $P X Y_{\text {pro) }}$ ),
SMXL5 pro:LhGR-N;Op4 pro:Cre;;pML988 (SMXL5 pro) and WOX4 pro $^{\text {p }}$ :LhGRN;Op4 pro:Cre;;pML988 (WOX4 $4_{\text {pro }}$ ) plant lines were treated with Dex at 22 dag by local application. YFP signals are shown in green and cell walls are visualized by Direct Red 23 (shown in magenta). Size bar $=100 \mu \mathrm{~m}$. Same magnification in all images.


Fig. S4. Cell lineage tracing of NST3, APL-positive cells.
(A-H) Maximum intensity projection of confocal images of cross sections of Dexinduced hypocotyls. NST3pro:LhGR-N;Op4pro:Cre;;pML988 (labeled as NST3pro), APLpro:LhGR-N;Op4pro:Cre;;pML988 (labeled as APLpro). YFP activity is shown in green, and cell walls are visualized by Direct Red 23 staining (magenta). Images of 2 days $(A, B)$ and 10 days (C, D) after Dex induction, respectively, are shown. Uncropped images of A-D are shown in E-H, respectively. Size bar $=50 \mu \mathrm{~m}(\mathrm{~A}-\mathrm{D})$, $100 \mu \mathrm{~m}(\mathrm{E}-\mathrm{H}) . \mathrm{n}=3,6,4,6$ for A-D, respectively. (I) Schematic summary for the position of labeled cells in the lineage tracing analysis of each promoter. 2 days (top), or 10 days (bottom) after Dex induction.


Fig. S5. Morphology of cell clones having originated from $P X Y_{\text {pro-positive cells. }}$
Maximum intensity projection of confocal images of hypocotyl cross sections. YFP signals are shown in green and cell walls are visualized by Direct Red 23 and shown in magenta. The hypocotyl center is located left. White brackets indicate the position of the YFP-positive clone. Clones were categorized into "l" to "V" according to their localization and morphology as shown in Fig. 4B.


Fig. S6. Morphology of cell clones having originated from $P X Y_{\text {pro-positive cells. }}$ Maximum intensity projection of confocal images of hypocotyl cross sections. YFP signals are shown in green and cell walls are visualized by Direct Red 23 and shown in magenta. The hypocotyl center is located left. White brackets indicate the position of the YFP-positive clones. Clones were categorized into "l" to "V" according to their localization and morphology as in Fig. 4B. Clones labeled with " $X$ " did not fit any category.


Fig. S7. Morphology of cell clones having originated from SMXL5 pro-positive cells.
Maximum intensity projection of confocal images of hypocotyl cross sections. YFP signals are shown in green and cell walls are visualized by Direct Red 23 and shown in magenta. The hypocotyl center is located left. White brackets indicate the position of cell clones. Clones were categorized into " l " to " V " according to their localization and morphology as in Fig. 4B.


Fig. S8. Morphology of cell clones having originated from WOX4 $4_{\text {pro-positive cells. }}$
Maximum intensity projection of confocal images of hypocotyl cross sections. YFP signals are shown in green and cell walls are visualized by Direct Red 23 and shown in magenta. The hypocotyl center is located left. White brackets indicate the position of the cell clones. Clones were categorized into "l" to "V" according to their localization and morphology as in Fig. 4B. Clones labeled with " $X$ " did not fit any category.


Fig. S9. Xylem / phloem sector length measurement of type III individual clones originated from PXYpro, SMXL5pro, WOX4pro-positive cells.
The xylem or phloem sector length was measured for each type III individual clones shown in Fig. 4B (also in Fig. S5, S6, S7, S8). Xylem or phloem were identified using the grid shown in 4B where the boundary between xylem and cambium is set by the auto-florescence of lignified cell wall, and cambium region is set to have $50 \mu \mathrm{~m}$ width in the section image. $\mathrm{n}=22$ (PXYpro), 5 (SMXL5pro), 8 (WOX4pro) clones.

Table S1. Cross correlation analysis between EdU signal profiles from different time points.

|  | Day 0 | Day 2 | Day 4 | Day 6 | Day 8 | Day 10 | Day 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Day 0 | 1.000 |  |  |  |  |  |  |
| Day 2 | 0.496 | 1.000 |  |  |  |  |  |
| Day 4 | 0.361 | 0.115 | 1.000 |  |  |  |  |
| Day 6 | -0.202 | 0.055 | 0.018 | 1.000 |  |  |  |
| Day 8 | -0.328 | -0.283 | -0.013 | 0.309 | 1.000 |  |  |
| Day 10 | -0.181 | -0.045 | -0.065 | 0.558 | 0.350 | 1.000 |  |
| Day 12 | -0.273 | -0.210 | -0.197 | 0.151 | 0.066 | 0.148 | 1.000 |

The EdU profiles from different time points after EdU incorporation shown in Fig. 1B are used for cross correlation analysis. Correlation values at lag $=0$ pixel, obtained from pair-wise comparison, are shown in the table. Value lower than 0.3 are highlighted in yellow, as it suggests that the compared two data set have little correlation.

Table S2. GreenGate Vectors used in this study.

| Vector name | Vector ID | Modules |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { PXY } \\ & \text { SMXL:ER-CFP; } \\ & \text { YFP } \end{aligned}$ | pVL78 | PXY ${ }_{\text {pro }}$ ( $\mathrm{pVL27*}$ ), ER Signal Peptide (pGGB006†), mTurquoise2 (pSW596*), HDEL (pGGD008†), tPXY ( $\mathrm{pVL29*}$ ), F-H adapter (pGGG001 $\dagger$ ), H-A adapter (pGGG002 $\dagger$ ), SMXL5 ${ }_{\text {pro }}$ (pVL28*), ER Signal Peptide (pGGB006 $\dagger$ ), VENUS (pSW549*), HDEL (pGGD008 $\dagger$ ), tSMXL5 (pVL20*), BastaR (pGGF001 $\dagger$ ), Destination vector (pGGZ003 $\dagger$ ) |
| $\begin{aligned} & \text { SMXL5pro:H2B- } \\ & \text { RFP } \end{aligned}$ | pDS77 | SMXL5 ${ }_{\text {pro }}$ (pVL28*), H2B-RFP (pDS76), tSMXL5 (pVL20*), HygroR (pGGF012 $\dagger$ ), Destination vector (pGGZOO3 $\dagger$ ) |
| $\begin{aligned} & \text { PXY } \text { pro: LhGR-N; }^{\text {Op4pro:Cre }} \end{aligned}$ | pDS26 | PXY pro (pVL27*), GR-LHG4_BD (pSW610*), tPXY ( $\mathrm{pVL29}$ ) , F-H adapter ( $\mathrm{pGGG} 001 \dagger$ ), H-A adapter (pGGG002†), Op4 pro (pSW180*), Cre (pDS03), tUBQ10 (pGGE009 $\dagger$ ), HygroR (pGGF005 $\dagger$ ), Destination vector (pGGZ003 $\dagger$ ) |
| SMXL5 pro:LhGRN ; Op4pro:Cre | pDS27 | SMXL5 ${ }_{\text {pro }}$ (pVL28*), GR-LHG4_BD (pSW610*), tSMXL5 (pVL20*), F-H adapter (pGGG001†), H-A adapter (pGGG002 $\dagger$ ), Op4 pro (pSW180*), Cre (pDS03), tUBQ10 (pGGE009 $\dagger$ ), HygroR (pGGF005 $\dagger$ ), Destination vector (pGGZ003 $\dagger$ ) |
| WOX4pro:LhGRN ; Op4pro:Cre | pDS28 | WOX4pro (pVL37*), GR-LHG4_BD (pSW610*), tWOX4 (pVL22*), F-H adapter (pGGG001 $\dagger$ ), H-A adapter (pGGG002 $\dagger$ ), Op4pro (pSW180*), Cre (pDS03), tUBQ10 (pGGE009 $\dagger$ ), HygroR (pGGF005 $\dagger$ ), Destination vector (pGGZ003 $\dagger$ ) |
| $\begin{aligned} & \text { NST3 } \text { pro: }^{\text {LhGR-N; }} \\ & \text { Op4 }{ }_{\text {pro }} \text { :Cre } \end{aligned}$ | pDS70 | NST3 ${ }_{\text {pro }}$ (pVL18*), GR-LHG4_BD (pSW610*), tNST3 ( $\mathrm{pVL} 13^{*}$ ), F-H adapter ( $\mathrm{pGGG} 001 \dagger$ ), H-A adapter (pGGG002†), Op4 ${ }_{\text {pro }}$ (pSW180*), Cre (pDS03), tUBQ10 (pGGE009 $\dagger$ ), HygroR (pGGF005 $\dagger$ ), Destination vector (pGGZ003 $\dagger$ ) |
| $\begin{aligned} & \text { APL } \text { pro: }^{\text {LhGR-N; }} \\ & \text { Op4pro:Cre } \end{aligned}$ | pDS71 | APL ${ }_{\text {pro }}$ (pVL35*), GR-LHG4_BD (pSW610*), tAPL ( $\mathrm{pVL} 25^{*}$ ), F-H adapter ( pGG G 001 H ), H-A adapter (pGGG002†), Op4pro (pSW180*), Cre (pDS03), tUBQ10 (pGGE009†), HygroR (pGGF005 $\dagger$ ), Destination vector (pGGZO03 $\dagger$ ) |

* reference: Schuerholz et al., 2018
† reference: Lampropoulos et al., 2013

Table S3. Primers used in this study.

| Primer name | Sequence (5'-3') | Usage |
| :--- | :--- | :--- |
| CEB1for11 | ACTAGGTACCCTTAGATTCGCACTCGCTCAACAACCGT <br> GAGCTCTGA | SMXL5 <br> promoter |
| CEB1rev2 | ACTAGGATCCATCATATGAACTTGTAAACCCTAACCCTA <br> AC | SMXL5 <br> promoter |
| CEB1for3 | ACTAGGATCCATCTGCAGTAGAATCTTTCGGTTAAATTT <br> C | SMXL5 <br> terminator |
| CEB1rev3 | ACTAGCGGCCGCTCTTGTTAACTTTCCAAAATTTG | SMXL5 <br> terminator |
| H4GFP- <br> PXYfor | ACTAGCGGCCGCATGTCGGGTCGTGGAAAGGGA | PXY pro:H4- <br> GFP |
| H4GFP- <br> APLrev | ACTACTGCAGTTATTTGTATAGTTCATCCATGC | PXY pro:H4- <br> GFP |
| H4GFP- <br> APLfor | ACTAACATGTCGGGTCGTGGAAAGGGA | WOX4 pro: <br> H4-GFP |
| H4GFPWOX <br> 4rev | ACTAGGATCCTTATTTGTATAGTTCATCCATGC | WOX4 pro: <br> H4-GFP |
| H4GFP_for1 | TATGTCGGGTCGTGGAAAGGGA | SMXL5pro: <br> H4-GFP |
| H4GFP_rev1 | TGCATTATTTGTATAGTTCATCCATGC | SMXL5pro: <br> H4-GFP |
| Cre- <br> pGGI000-5- <br> TG495 | AACAGGTCTCAAACAATGCATCTGGATCAATCCAATTTA <br> C | Cloning of <br> Cre |
| NewCre- <br> pGGIO00-3 | AACAGGTCTCAGCAGCTAAATCGCCATCTTCCAGCAGG | Cloning of <br> Cre |
| H2BRFPinp <br> GGI-Fwd | AACAGGTCTCAAACAATGGCGAAGGCAGATAAGAAAC | Cloning of <br> H2B-RFP |
| H2BRFPinp <br> GGI-Rev | AACAGGTCTCAGCAGTTATAATTAGGCGCCGGTGG | Cloning of <br> H2B-RFP |

