

Figure S1. Both short axial ratio and flat spindle poles decrease the time required to rotate to 90° in Cytosim simulations. Spindles that did not rotate to 90° during the 300 sec simulation were assigned a time of 310 sec. n=100 simulations for each of 8 conditions. Boxes extend from the 25th to the 75th percentile.

***** indicates p<.0001 by ANOVA.

Figure S2. Endogenously tagged dynein regulators label spindle poles in control, mei-2(ct98) and knl-1,3(kd) embryos. (A-D). GFP::DNC-2 (p50 dynamitin) is present at spindle poles in control (A, C) and mei-2(ct98) (B, D) embryos. (E-F). mNeonGree::DHC-1 is present at spindle poles of control (E) and knl-1,3(kd) spindles (F). Bars = 5 μ m.

Table S1. C. elegans strains.

FM125: ruls57[pie-1p::GFP::tubulin + unc-119(+)]V; itls37[pie-1p::mCherry:H2B::pie-1 3'UTR + unc-119(+)] IV.

FM13: mei-2(ct98) I; ruls57[pie-1p::GFP::tubulin + unc-119(+)]V; itls37[pie-1p::mCherry:H2B::pie-1 3'UTR + unc-119(+)] IV.

FM562: lin-5(he244[egfp::lin-5] II; itls37[pie-1p::mCherry:H2B::pie-1 3'UTR + unc-119(+)] IV.

FM582: mei-2(ct98) I; lin-5(he244[egfp::lin-5] II; itIs37[pie-1p::mCherry:H2B::pie-1 3'UTR + unc-119(+)] IV.

FM485: lin-5(he244[egfp::lin-5] II; duSi10[mex-5p::mCherry::H2B operon linker mKate2::PH inserted in K03H6.5] IV.

FM583: mei-2(ct98) I; lin-5(he244[egfp::lin-5] II; duSi10[mex-5p::mCherry::H2B operon linker mKate2::PH inserted in K03H6.5] IV.

FM461: cpls54[mex-5p::mKate::PLC(delta)PH(A735T)::tbb-2 3'UTR + unc-119(+)] II; itls37[pie-1p::mCherry:H2B::pie-1 3'UTR + unc-119(+)] IV; ruls57[pie-1p::GFP::tubulin + unc-119(+)] V.

EU1561: orls17 [dhc-1::GFP::DHC-1, unc-119(+)]; itls37 [unc-119(+) pie-1::mCherry::H2B] IV.

FM460: prtSi122[pRG629; mex-5p::ebp-2::mKate2::tbb-2 3'UTR + unc-119(+)] II; dnc-2[prt42(N-terminal 3XFLAG::GFP)] III; itIs37[pie-1p::mCherry:H2B::pie-1 3'UTR + unc-119(+)] IV.

FM462: mei-2(ct98) I; prtSi122[pRG629; mex-5p::ebp-2::mKate2::tbb-2 3'UTR + unc-119(+)] II; dnc-2[prt42(N-terminal 3XFLAG::GFP)] III; itIs37[pie-1p::mCherry:H2B::pie-1 3'UTR + unc-119(+)] IV.

HR399: unc116(f130) unc-36(e251) III

FM568: lin-5(cp288[lin-5::mNG-C1^3xFlag]) II; knl-1(lt53[knl-

1::GFP::tev::loxP::3xFlag]))III; itIs37 [pie-1p::mCherry::H2B::pie-1 3'UTR + unc-119(+)]
IV; knl-3 (lt46 [GFP::knl-3]) V

FM593: dhc-1(cp268[dhc::mNG-C1^3xFlag]) I; knl-1(lt53[knl-

1::GFP::tev::loxP::3xFlag]))III; itIs37 [pie-1p::mCherry::H2B::pie-1 3'UTR + unc-119(+)]

IV; knl-3 (lt46 [GFP::knl-3]) V

FM553: cpls103[Psun-1>TIR1-C1::F2A::mTagBFP2-C1::NLS + SEC] II; knl-1(du5 [KNL-1::AID]) III; itls37 [pie-1p::mCherry::H2B::pie-1 3'UTR + unc-119(+)] IV; ruls57 [pie-1p::GFP::tubulin + unc-119(+)] V; knl-3(du2 [AID::KNL-3]) V

FM554: ASPM-1(or1935 [GFP::ASPM]) I; cpls103[Psun-1>TIR1-C1::F2A::mTagBFP2-C1::NLS + SEC] II; knl-1(du5 [KNL-1::AID]) III; itls37 [pie-1p::mCherry::H2B::pie-1 3'UTR + unc-119(+)] IV; knl-3(du2 [AID::KNL-3]) V

FM594: dhc-1(cp268[dhc::mNG-C1^3xFlag]) I; itIs37 [pie-1p::mCherry::H2B::pie-1 3'UTR + unc-119(+)] IV

FM595: lin-5(cp288[lin-5::mNG-C1^3xFlag]) II; itIs37 [pie-1p::mCherry::H2B::pie-1 3'UTR + unc-119(+)] IV

Supplementary materials and methods

Cytosim code

```
set simul INVIVO
                     %Parameters that describe the simulation physics
{
  time step = 0.001
                      %The time interval, in seconds, that passes between each timepoint calculated by the Langevin
                     %Sets whether fibers and solids can sterically repel each other. 1 is a Boolean that sets steric to
  steric = 1, 100
                     %TRUE; 100 is the energy cost of violating sterics
                     %um<sup>2</sup>/s: viscosity of the cytoplasm in an oocyte (Daniels et al., 2006)
  viscosity = 1
                     %Describes the precision of object placement calculations (smaller is more precise)
  tolerance = 0.01
  kT = 0.0042
                     %pN.µm; thermal energy of the Brownian system, set for 24C
set space cell
                             %Parameters that describe the simulation space
  geometry = ( capsule 5 15 ) %µm; defines the half-lengths of the x and y axes of a capsule object
set fiber microtubule
{
  rigidity = 20
                             %pN.µm<sup>2</sup>; related to persistence length (Gittes et al., 1993)
  segmentation = 0.5
                             %µm; defines the spacing between calculated points on a fiber
  confine = inside, 100
                             %Sets confinement of fibers to space; number sets energy cost of violating confinement
  steric = 1, 0.05
                             %Turns sterics on for this fiber; second number is in µm and defines repulsion radius
  activity = dynamic
                             %Enables fiber dynamics (growth, shrinkage)
                             %µm; defines minimal length of a "monomer" for fiber growth (must be <= growing speed
  unit length = 0.01
  growing speed = 0.08
                             %µm/s; defines growth rate of fiber dynamic end
  shrinking_speed = -0.2
                             %µm/s; defines shrinking rate of fiber dynamic end
  hydrolysis rate = 0.8, 2
                             %s<sup>-1</sup>; frequency of fiber switching to shrinkage on dynamic end
  rescue rate = 0.01
                             %s<sup>-1</sup>; frequency of fiber switching to growth on dynamic end
  growing_force = 1
                             %pN; characteristic force for polymer assembly
  binding_key = 1
                             %Numeric designator that defines which hands and couples can interact/bind
}
set fiber microtubule2
{
  rigidity = 20
                             %pN.µm<sup>2</sup>; related to persistence length (Gittes et al., 1993)
  segmentation = 1
                             %µm; defines the spacing between calculated points on a fiber
  confine = inside, 100
                             %Sets confinement of fibers to space; number sets energy cost of violating confinement
  binding_key = 2
                             %Numeric designator that defines which hands and couples can interact/bind
set hand nucleator
{
  unbinding rate = 0
                             %s<sup>-1</sup>; frequency of the hand letting go of a fiber if bound
                             %pN; force descriptor for the Kramer's force-dependent unbinding of the hand
  unbinding force = 5
                             %Sets activity of this hand to generate fibers
  activity = nucleate
  nucleate = 1, microtubule2, (fiber_length= 0.2)
  %Defines that this hand will generate a single fiber of type "microtubule2" with an initial length of 0.2 μm.
  display = ( size=2; color= green; )
                                    %Sets display parameters for visualization
}
set hand concrete
{
  binding rate = 6
                             %s<sup>-1</sup>; frequency of the hand binding a nearby fiber
  binding_range = 0.05
                             %µm; defines minimal distance for hand to be able to bind a fiber
  unbinding rate = 0
                             %s<sup>-1</sup>; frequency of the hand letting go of a fiber if bound
  binding_key = 2
                             %Numeric designator that defines which hands and couples can interact/bind
```

```
Development: doi:10.1242/dev.178863: Supplementary information
  display = ( size=2; color= purple; )
                                       %Sets display parameters for visualization
}
set hand nucleator2
  unbinding rate = 0
                                %s<sup>-1</sup>; frequency of the hand letting go of a fiber if bound
  unbinding force = 3
                               %pN; force descriptor for the Kramer's force-dependent unbinding of the hand
  activity = nucleate
  nucleate = 2, microtubule, (fiber length= 1.5)
  %Defines that this hand will generate a single fiber of type "microtubule" with an initial length of 1.5 μm.
  display = ( size=2; color= red; )
                                       %Sets display parameters for visualization
}
set hand cargoD
  binding_rate = 2
                                %s<sup>-1</sup>; frequency of the hand binding a nearby fiber
                               %µm; defines minimal distance for hand to be able to bind a fiber
  binding_range = 0.1
                               %s<sup>-1</sup>; frequency of the hand letting go of a fiber if bound
  unbinding rate = 0
                               %pN; force descriptor for the Kramer's force-dependent unbinding of the hand
  unbinding force = 6
  binding key = 2
                               %Numeric designator that defines which hands and couples can interact/bind
  display = (size=2; color=0xFF000001)
                                               %Sets display parameters for visualization (color is in HEX)
}
set hand dynein
{
  binding rate = 0.5
                               %s-1; frequency of the hand binding a nearby fiber
  binding range = 0.1
                               %µm; defines minimal distance for hand to be able to bind a fiber
  unbinding rate = 0.1
                                %s<sup>-1</sup>; frequency of the hand letting go of a fiber if bound
  unbinding force = 8
                               %pN; force descriptor for the Kramer's force-dependent unbinding of the hand
  binding_key = 1
                               %Numeric designator that defines which hands and couples can interact/bind
  activity = move
                               %Sets activity so that this hand can motor on fibers
  max speed = -0.1
                               %µm/s; defines maximum translocation (towards the minus end) with no load
                               %pN; defines force-load at which motor will stall on a fiber
  stall force = 6
  binding key = 1
                               %Numeric designator that defines which hands and couples can interact/bind
                                               %Sets display parameters for visualization (color is in HEX)
  display = (size=2; color=0xFF000001)
}
set single spindleNucleator
{
  hand = nucleator2
                               %Defines the hand on a simple agent
  stiffness = 100
                               %pN/µm; used to calculate strain and deformation of single under force
}
set single corticalNucleator
{
  hand = nucleator
                               %Defines the hand on a simple agent
  activity = fixed
                               %Sets this single to be fixed in space (does not move with Brownian)
  stiffness = 1000
                               %pN/µm; used to calculate strain and deformation of single under force
}
set single corticalGlue
{
  hand = concrete
                               %Defines the hand on a simple agent
  confine = surface
                               %Sets this single to be fixed on the edge of the 2D space
  stiffness = 500
                               %pN/µm; used to calculate strain and deformation of single under force
}
```

```
set couple Dynein
  hand1 = cargoD
                             %Defines the hand on an agent that can bind two fibers
                             %Defines the hand on an agent that can bind two fibers
  hand2 = dynein
  stiffness = 100
                            %pN/µm; used to calculate strain and deformation of couple under force
  fast diffusion = 1
                            %Boolean; if enabled unbound couples are not given explicit positions but are presumed
                            %to diffuse so guickly they can interact with a random fiber at any point.
  length = 0.03
                            %µm; defines the length of the linker between two hands
  activity = crosslink
                             %Sets couple to bind fibers with both hands and transmit forces between them
}
set solid spindle
  confine = all inside, 100
                             %Sets solid to be confined inside the space with an energy cost of 100 for violations
  steric = 1
                             %Boolean; spindle solids cannot be crossed by other steric components
                            % Sets display parameters for visualization
  display = { style=6 }
}
new space cell
new 1 solid spindle
                             %Generates a solid consisting of many points, some of which are beads and some of
                             %which are nucleators that generate spindle pole microtubules. This code generates one
                             %specific spindle geometry. Several others were also run to compare different spindles.
                             %first three numbers define placement (X,Y,Z) relative to the central coordinates of the
                             %solid at any given timepoint.
  nb points = 34
                                                  %Sets number of points that make up the solid
  point0 = 0 1.2 0, 0.6
                                                  %Defines a bead of radius 0.6 µm
  point1 = 0 -1.2 0, 0.6
                                                  %Defines a bead of radius 0.6 µm
  point2 = 0.6 \ 0 \ 0, 1.4
                                                  %Defines a bead of radius 1.4 µm
  point3 = -0.6 \ 0 \ 0, 1.4
                                                  %Defines a bead of radius 1.4 µm
  point4 = 1.625 1.06 0 , 0, spindleNucleator
                                                  %Defines a nucleator on the spindle pole
  point5 = 1.393 1.174 0 , 0, spindleNucleator
                                                  %Defines a nucleator on the spindle pole
  point6 = 1.161 1.289 0 , 0, spindleNucleator
                                                  %Defines a nucleator on the spindle pole
  point7 = 0.929 \ 1.403 \ 0 , 0, spindleNucleator
                                                  %Defines a nucleator on the spindle pole
  point8 = 0.696 1.517 0 , 0, spindleNucleator
                                                  %Defines a nucleator on the spindle pole
  point9 = 0.464 1.631 0 , 0, spindleNucleator
                                                  %Defines a nucleator on the spindle pole
  point10 = 0.232 1.746 0 , 0, spindleNucleator
                                                  %Defines a nucleator on the spindle pole
  point11 = 0 1.86 0 , 0, spindleNucleator
                                                  %Defines a nucleator on the spindle pole
  point12 = -0.232 \ 1.746 \ 0 , 0, spindleNucleator
                                                  %Defines a nucleator on the spindle pole
  point13 = -0.464 1.631 0 , 0, spindleNucleator
                                                  %Defines a nucleator on the spindle pole
  point14 = -0.696 1.517 0 , 0, spindleNucleator
                                                  %Defines a nucleator on the spindle pole
  point15 = -0.929 1.403 0 , 0, spindleNucleator
                                                  %Defines a nucleator on the spindle pole
  point16 = -1.161 1.289 0 , 0, spindleNucleator
                                                  %Defines a nucleator on the spindle pole
  point17 = -1.393 1.174 0, 0, spindleNucleator
                                                  %Defines a nucleator on the spindle pole
  point18 = -1.625 1.06 0 , 0, spindleNucleator
                                                  %Defines a nucleator on the spindle pole
  point19 = 1.625 -1.06 0 , 0, spindleNucleator
                                                  %Defines a nucleator on the spindle pole
  point20 = 1.393 -1.174 0 , 0, spindleNucleator
                                                  %Defines a nucleator on the spindle pole
  point21 = 1.161 -1.289 0 , 0, spindleNucleator
                                                  %Defines a nucleator on the spindle pole
  point22 = 0.929 - 1.403 0, 0, spindleNucleator
                                                  %Defines a nucleator on the spindle pole
  point23 = 0.696 - 1.517 0, 0, spindleNucleator
                                                  %Defines a nucleator on the spindle pole
  point24 = 0.464 - 1.631 0, 0, spindleNucleator
                                                  %Defines a nucleator on the spindle pole
  point25 = 0.232 -1.746 0 , 0, spindleNucleator
                                                  %Defines a nucleator on the spindle pole
  point26 = 0 -1.86 0 , 0, spindleNucleator
                                                  %Defines a nucleator on the spindle pole
  point27 = -0.232 -1.746 0 , 0, spindleNucleator
                                                  %Defines a nucleator on the spindle pole
```

```
point28 = -0.464 -1.631 0 , 0, spindleNucleator
                                                        %Defines a nucleator on the spindle pole
  point29 = -0.696 - 1.517 0, 0, spindleNucleator
                                                        %Defines a nucleator on the spindle pole
  point30 = -0.929 - 1.403 0, 0, spindleNucleator
                                                        %Defines a nucleator on the spindle pole
  point31 = -1.161 - 1.289 0, 0, spindleNucleator
                                                        %Defines a nucleator on the spindle pole
  point32 = -1.393 -1.174 0 , 0, spindleNucleator
                                                        %Defines a nucleator on the spindle pole
                                                        %Defines a nucleator on the spindle pole
  point33 = -1.625 - 1.060, 0, spindleNucleator
  position = 16.8 0 0 at 0 0
                                                        %Places the solid in absolute space
  orientation = 1 0 0
                                                        %Aligns the spindle solid to the X axis
new 2000 couple Dynein
                                                        %Places 2000 couples randomly in the space
new 100 single corticalGlue
                                                        %Places 100 singles
{
  position = rectangle 2 4 at 16.5 0
                                                        %Places these singles in a rectangle centered at 16.5 in X
}
new 140 single corticalNucleator
                                                        %Places 140 singles
{
  position = arc 30 2.0 at 19.96 0
                                                        Places them in an arc at 19.96 in X with radius 30 and width 2
}
                                                        %Run the simulation
run simul *
{
  nb_steps = 3000
                                                        %Number of calculated timepoints
  nb_frames = 3
                                                        %Number of frames generated for visualization
}
change single corticalNucleator {activity = fixed;}
                                                        %Changes single so that they cannot move anymore
run simul *
                                                        %Run the simulation
  nb steps = 300000
                                                        %Number of calculated timepoints
  nb frames = 300
                                                        %Number of frames generated for visualization
}
```

Movies

For all movies: Red dots represent cytoplasmic dynein molecules that associate randomly with astral or cortical microtubules, motor to the minus end, and dissociate with a rate constant that increases with applied force. Pulling toward the cortex occurs transiently when a dynein contacts both a cortical microtubule and an astral microtubule. After the first frame, only dynein molecules engaged with a microtubule are displayed. Astral microtubules emanate from nucleators arranged to mimic the localization of dynein/LIN-5 on control (flat) or mei-2(ct98) (pointed) poles. Green dots represent nucleation sites for short cortical microtubules. Purple dots represent a "cortical glue" that resists detachment once close contact between the pole and cortex is achieved. All spindles start at a fixed distance from the cortex and perfectly parallel to the cortex.

Movie 1. Simulation of rotation of a short (0.9 axial ratio) spindle with flattened poles and short astral microtubules. This shape mimics control spindles midway through rotation. Astral microtubules are short due to a polymerization rate of 0.06 μ m/s.

Movie 2. Simulation of rotation of a long (1.5 axial ratio) spindle with pointed poles and short astral microtubules. This shape mimics the shape of the shortest mei-2(ct98) spindles that rotate partially to a diagonal angle relative to the cortex. Astral microtubules are short due to a polymerization rate of $0.06 \, \mu m/s$.

Movie 3. Simulation of rotation of a short (0.9 axial ratio) spindle with pointed poles and short astral microtubules. This spindle has the axial ratio of a control spindle and pointed poles like a mei-2(ct98) spindle. Astral microtubules are short due to a polymerization rate of 0.06 μ m/s.

Movie 4. Simulation of rotation of a long (1.5 axial ratio) spindle with flattened poles and short astral microtubules. This spindle has the axial ratio of the shortest mei-2(ct98) spindles that rotate partially to a diagonal angle relative to the cortex but with poles shaped like those of a control spindle. This shape is also similar to that of knl-1,3(kd) spindles that partially rotate or fail to rotate. Astral microtubules are short due to a polymerization rate of 0.06 μ m/s.

Movie 5. Simulation of rotation of a long (1.5 axial ratio) spindle with pointed poles and long astral microtubules. This shape mimics the shape of the shortest mei-2(ct98) spindles that rotate partially to a diagonal angle relative to the cortex. Astral microtubules are long due to a polymerization rate of 0.18 μ m/s.

Movie 6. Simulation of rotation of a long (1.5 axial ratio) spindle with flattened poles and long astral microtubules. This spindle has the axial ratio of the shortest mei-2(ct98) spindles that rotate partially to a diagonal angle relative to the cortex but with poles shaped like those of a control spindle. This shape is also similar to that of knl-1,3(kd) spindles that partially rotate or fail to rotate. Astral microtubules are long due to a polymerization rate of 0.18 μ m/s.

Movie 7. Simulation of rotation of a short (0.9 axial ratio) spindle with flattened poles and long astral microtubules. This shape mimics control spindles midway through rotation. Astral microtubules are long due to a polymerization rate of 0.18 μ m/s.

Movie 8. Simulation of rotation of a short (0.9 axial ratio) spindle with pointed poles and long astral microtubules. This spindle has the axial ratio of a control spindle and pointed poles like a mei-2(ct98) spindle. Astral microtubules are long due to a polymerization rate of 0.18 μ m/s.