

Fig. S1. FLC is down regulated in the top1 α mutant. The qRT-PCRs were used to measure the relative expression levels of FPA, FY, FCA, FVE, FLK, FLD, LD, VRN2, VIP4, FLC, FRI, FT and SOC1 in top1 α mutants. The expression levels of these genes in the wild-type Col-0 were normalized to 1 and marked with the black line. Mean \pm SD with three independent biological replicates. Bars marked with different letters are statistically different to each other (P < 0.05 by Student's t test). Total RNA was isolated from 8-day-old seedlings grown in 1/2 MS media under long-day conditions. TUBULIN was used to normalize the mRNA levels. The primer sequences used are listed in Table S1.

Fig. S2. The $pTOP1\alpha::TOP1\alpha$ -GFP transgenic plants rescue early flowering phenotypes of $top1\alpha$ mutants. (A) The early flowering phenotypes of $top1\alpha$ mutants were rescued by the $pTOP1\alpha::TOP1\alpha$ -GFP transgene. Bar, 2 cm. (B-C) The rosette leaf numbers and days of flowering were measured in Col-0, $top1\alpha$ and $pTOP1\alpha::TOP1\alpha$ -GFP/ $top1\alpha$ transgenic plants. Mean \pm SD. Bars marked with different letters are statistically different to each other (P < 0.05 by Student's t test). Plants were grown in the soil under long-day conditions. n, the number of plants.

Fig. S3. $TOP1\alpha$ expression patterns in the shoot apex. (A-E) $TOP1\alpha$ expression patterns in the Col-0 seedlings using in situ hybridization. Serial sections were shown. Bar, 100 µm. (F) The sense control of $TOP1\alpha$ in the in situ hybridization. (G-I) The protein localization of $TOP1\alpha$ in the $pTOP1\alpha$: $TOP1\alpha$ - $GFP/top1\alpha$ rescued plant. Bar, $100 \ \mu m$.

Fig. S4. TOP1 α does not regulate *SDG8* and *CTD* at the transcription level. The relative expression levels of *SDG8* (A) and *CTD* (B) in $top1\alpha$ mutants were detected by qRT-PCR. Mean \pm SD with three independent biological replicates. Bars marked with same letters are not statistically different to each other (P > 0.05 by Student's t test). Total RNA was isolated from 8-day-old seedlings grown in 1/2 MS media under long-day conditions. *TUBULIN* was used to normalize the mRNA levels. The primer sequences used are listed in Table S1.

Fig. S5. TOP1α, CTD and SDG8 are in the same complex. BiFC-based FRET was performed to examine the interaction of TOP1α, CTD and SDG8 proteins in the same complex. The *35S::CFP-TOP1α-1*, *35S::nYFP-CTD* and *35S::cYFP-SDG8* were co-transformed into the abaxial leaves of *N. benthamiana*. The *35S::cYFP-AGO6* and *35S::WOX5-YFP* were used as negative controls. The excitation wavelength of 448 nm (CFP) and the emission wavelength of 514 nm (YFP) were used in the FRET channel. Bar, 100 μm.

Fig. S6. The alignment of Topoisomerase 1 in different species. **(A)** All protein sequences were obtained from NCBI (https://www.ncbi.nlm.nih.gov/) and aligned using the software ClustalX2 (http://www.clustal.org/clustal2/). The numbers of amino acids are marked on the right. The column below shows the conservation

among different species. The dot ('.'), conservative; ':', obviously conservative; '*', absolutely conservative. The red frame shows the 370th amino acid of $TOP1\alpha$ in *Arabidopsis thaliana* and conserved amino acids among different species. **(B)** Phylogenetic tree and genetic distance of Topoisomerase 1 protein sequences among different species. The numbers above indicate the genetic distance.

Table S1. Oligonucleotides used in this study

Primers for ChIP and qRT-PCR

Number	Name	Forward (F) and reverse (R) primers
H3111	FLC 1 (-662 to -412)	F: 5'-AGGCGAGTGGTTCTTTGTTTT-3'
H3112		R: 5'-CCTCCCCTACGATACGGATT-3'
H6342	FLC 2 (-269 to -201)	F: 5'-CTCGTCATGCGGTACACGTGGC-3'
H6461		R: 5'-AAAAACCAAATATGTGAATAAAAAC-3'
H5744	FLC 3 (-200 to -1)	F: 5'-TTGCATCACTCTCGTTTACCC-3'
H5745		R: 5'-GGCTTCTCTCCGAGAGGGC-3'
H1248	FLC 4 (+71 to +150)	F: 5'-TCGCAACGGTCTCATCGA-3'
H1249		R: 5'-GGCGGAGACGACGAGAAG-3'
H3115	FLC 5 (+201 to +388)	F: 5'-ACCTGGGTTTTCATTTGTTCC-3'
H3116		R: 5'-TTTGGTTATCTCATGTATCTATC-3'
H3117	FLC 6 (+688 to +865)	F: 5'-TCATTGGATCTCTCGGATTTG-3'
H3118		R: 5'-ACTAATTTGGATAATCACCAAG-3'
H3119	FLC 7 (+1306 to +1524)	F: 5'-TTCCCACTCTTGCAGTTACACACA-3'
H3120		R: 5'-AAGACACAAGATACAAAGGTTGT-3'
H3121	FLC 8 (+2562 to +1746)	F: 5'-TGAACTCATGAAAGAGGCGTT-3'
H3122		R: 5'-TACAAAGCGTGTTATCAAAACC-3'
H6339	FLC 9 (+5506 to +5616)	F: 5'-ATGGAGAATAATCATCATGTG-3'
H6340		R: 5'-CTAATTAAGTAGTGGGAGAG-3'
H3123	FLC 10 (+5733 to +5869)	F:5'-GTTTGTATATCTTAATACTCTCTCTTTTGGC-3'
H3124		R: 5'-ATGCAATTCTCACACGAATAAG-3'
H2660	FPA	F: 5'-ACCAAGCACTACGATTGCAGC-3'
H2661		R: 5'-ACCTGAAGACTGTTGCTGCTG-3'
H2662	FY	F: 5'-TCAAGGACAACCAAACAGTG-3'
H2663		R: 5'-TGCCTACTGATGTTGCTGATTG-3'
H2664	FCA	F: 5'-AGCAGCAACCGCTACAAAAGATG-3'

H2665		R: 5'-TGCGAGAACTGGCACAAAC-3'
H2821	FVE	F: 5'-TGCGAGAACTGGCACAAAC-3'
H2822		R: 5'-AGGCGAACCAACTCCATTAG-3'
H2823	FLK	F: 5'-ACGTCGGGTTCAAACATAAG-3'
H2824		R: 5'-TTGCTGCTCTGGTGCTAC-3'
H2825	FLD	F: 5'-ACGCAGTGACTCGTGTTC-3'
H2826		R: 5'-AGGGTATCGCCTTGTTG-3'
H2827	LD	F: 5'-TCGTCACAGGGTCCAAAAC-3'
H2828		R: 5'-TATAAAGGGCACGCATC-3
H2670	VRN2	F: 5'-ATGGACTTGTCGACTCAGCCAC-3'
H2671		R: 5'-TGTCATTCGGATGATCCACAATG-3'
H2672	VIP4	F: 5'-TGAAGAAGAGGAAGAGGTTGC-3'
H2673		R: 5'-TCGTCACTGTCATCAATCACG-3'
H2656	FRI	F: 5'-TGACTGAAGGAGGATTAGCTG-3'
H2657		R: 5'-TCTCATTCGAACCACTCATC-3'
H1248	FLC	F: 5'-TCGCAACGGTCTCATCGA-3'
H1249		R: 5'-GGCGGAGACGACGAGAAG-3'
Н0999	FT	F: 5'-TACGAAAATCCAAGTCCCACTG-3'
H1000		R: 5'-AAACTCGCGAGTGTTGAAGTTC-3'
H0504	SOCI	F: 5'-AGGAACATGCTCAATCGAGG-3'
H0505		R: 5'-CTTATACACTCTCAGTACTGC-3'
H5028	SDG8	F: 5'-ACCTGACTTACTCCAATGAGATC-3'
H0723		R: 5'-TTAACTGTTGAGCTTCTTCTCTAAA-3'
H6529	CTD	F: 5'-AGCAAGCCCAGACTACAGC-3'
H6530		R: 5'-CAGGGTTGCCTTTATCATCC-3'
H0069	Tublin	F: 5'-GAGCCTTACAAGCTACTCTGTCT3'
H0070		R: 5'-ACACCAGACATAGTAGCAGAAATCAAG-3'

Primers for in situ hybridization

Number	Name	Forward (F) and reverse (R) primers
H0079	ΤΟΡΙα	T7: 5'-TAATACGACTCACTATAGGG-3'
H0080		Sp6: 5'-ATTTAGGTGACACTATAGAATACT-3'

Primers for cloning

Number	Name	Forward (F) and reverse (R) primers
H5603	SDG8	F: 5'-GCGTCGACCTAAAAAACCATGTTGGGGATTCA-3'
H5604		R: 5'-TTTTCCTTTTGCGGCCGCAAATTTAACTTTCAAACGAAGGC-3'
H5308	ΤΟΡ1α-1	F:
H4036		5'-ATAAGAATGCGGCCGCCATGGGCACTGAAACAGTTTCAAAACC-3'
		R: 5'-CCGCTCGAGTTATTTCTTTTGCCCATCTCCAGAGGAAG-3'
H5309	ΤΟΡ1α-2	F:
H4038		5'-ATAAGAATGCGGCCGCcAAATGGACTACTTTGGTGCACAACGG-3'
		R: 5'-CCGCTCGAGTTATCCCAAAAATACATACTTGAATTC-3'
H5310	ΤΟΡ1α-3	F:
H4041		5'-ATAAGAATGCGGCCGCCCTTTTCAGAGGCCGTGGAGAACATCC-3'
		R: 5'-ACGCGTCGACACACACATGGTGCGCAAATTGAAAAATTG-3'
H5579	CTD	F: 5'-ACGCGTCGACaGTTTATCCCCAATGTCAGATGCAC-3'
H5580		R: 5'-ATAGTTTAGCGGCCGCCAGGGTTGCCTTTATCATCCTTAC-3'
H3109	FLC	F: 5'-ACGCGTCGACATGGGAAGAAAAAAACTAGAAATC-3'
H3110		R: 5'-TTTTCCTTTTGCGGCCGCCTAATTAAGTAGTGGGAGAG-3'