

Fig. S1. FLC is down regulated in the top 1α mutant. The qRT-PCRs were used to measure the relative expression levels of $F P A, F Y, F C A, F V E, F L K, F L D, L D, V R N 2$, VIP4, FLC, FRI, FT and SOC1 in topl α mutants. The expression levels of these genes in the wild-type Col- 0 were normalized to 1 and marked with the black line. Mean \pm SD with three independent biological replicates. Bars marked with different letters are statistically different to each other ($\mathrm{P}<0.05$ by Student's t test). Total RNA was isolated from 8-day-old seedlings grown in $1 / 2 \mathrm{MS}$ media under long-day conditions. TUBULIN was used to normalize the mRNA levels. The primer sequences used are listed in Table S1.

Fig. S2. The pTOP1a::TOP1a-GFP transgenic plants rescue early flowering phenotypes of top 1α mutants. (A) The early flowering phenotypes of top 1α mutants were rescued by the $p T O P 1 \alpha:: T O P 1 \alpha-G F P$ transgene. Bar, 2 cm . (B-C) The rosette leaf numbers and days of flowering were measured in Col-0, topla and pTOP1 $::$ TOP1 α-GFP/top1 α transgenic plants. Mean \pm SD. Bars marked with different letters are statistically different to each other ($\mathrm{P}<0.05$ by Student's t test). Plants were grown in the soil under long-day conditions. n, the number of plants.

Fig. S3. TOP1 α expression patterns in the shoot apex. (A-E) TOP1 α expression patterns in the Col-0 seedlings using in situ hybridization. Serial sections were shown. Bar, $100 \mu \mathrm{~m}$. (\mathbf{F}) The sense control of TOP 1α in the in situ hybridization. (G-I) The protein localization of TOP 1α in the $p T O P 1 \alpha::$ TOP1 $\alpha-G F P /$ top 1α rescued plant. Bar, $100 \mu \mathrm{~m}$.

Fig. S4. TOP1a does not regulate SDG8 and CTD at the transcription level. The relative expression levels of $S D G 8(\mathbf{A})$ and $C T D(\mathbf{B})$ in top 1α mutants were detected by qRT-PCR. Mean \pm SD with three independent biological replicates. Bars marked with same letters are not statistically different to each other ($\mathrm{P}>0.05$ by Student's t test). Total RNA was isolated from 8 -day-old seedlings grown in $1 / 2$ MS media under long-day conditions. TUBULIN was used to normalize the mRNA levels. The primer sequences used are listed in Table S1.

Fig. S5. TOP1 α, CTD and SDG8 are in the same complex. BiFC-based FRET was performed to examine the interaction of TOP1 1α, CTD and SDG8 proteins in the same complex. The $35 S::$ CFP-TOP1 $\alpha-1$, $35 S::$ nYFP-CTD and $35 S::$ cYFP-SDG8 were co-transformed into the abaxial leaves of N. benthamiana. The 35S::cYFP-AGO6 and $35 S:$:WOX5-YFP were used as negative controls. The excitation wavelength of 448 nm (CFP) and the emission wavelength of 514 nm (YFP) were used in the FRET channel. Bar, $100 \mu \mathrm{~m}$.

Fig. S6. The alignment of Topoisomerase 1 in different species. (A) All protein sequences were obtained from NCBI (https://www.ncbi.nlm.nih.gov/) and aligned using the software ClustalX2 (http://www.clustal.org/clustal2/). The numbers of amino acids are marked on the right. The column below shows the conservation
among different species. The dot ('.'), conservative; ' \because ', obviously conservative; '*', absolutely conservative. The red frame shows the 370th amino acid of TOP1 α in Arabidopsis thaliana and conserved amino acids among different species. (B) Phylogenetic tree and genetic distance of Topoisomerase 1 protein sequences among different species. The numbers above indicate the genetic distance.

Table S1. Oligonucleotides used in this study

Primers for ChIP and qRT-PCR

Number	Name	Forward (F) and reverse (R) primers
H3111	$F L C 1(-662$ to -412$)$	F: 5'-AGGCGAGTGGTTCTTTGTTTT-3'
H3112		R: 5'-CCTCCCCTACGATACGGATT-3'
H6342	$F L C 2$ (-269 to -201)	F: 5'-CTCGTCATGCGGTACACGTGGC-3'
H6461		R: 5'-AAAAACCAAATATGTGAATAAAAAC-3'
H5744	$F L C 3(-200$ to -1$)$	F: 5'-TTGCATCACTCTCGTTTACCC-3'
H5745		R: 5'-GGCTTCTCTCCGAGAGGGC-3'
H1248	$F L C 4(+71$ to +150$)$	F: 5'-TCGCAACGGTCTCATCGA-3'
H1249		R: 5'-GGCGGAGACGACGAGAAG-3'
H3115	$F L C 5(+201$ to +388$)$	F: 5'-ACCTGGGTTTTCATTTGTTCC-3'
H3116		R: 5'-TTTGGTTATCTCATGTATCTATC-3'
H3117	$F L C 6(+688$ to +865$)$	F: 5'-TCATTGGATCTCTCGGATTTG-3'
H3118		R: 5'-ACTAATTTGGATAATCACCAAG-3'
H3119	$F L C 7(+1306$ to +1524$)$	F: 5'-TTCCCACTCTTGCAGTTACACACA-3'
H3120		R: 5'-AAGACACAAGATACAAAGGTTGT-3'
H3121	$F L C 8(+2562$ to +1746$)$	F: 5'-TGAACTCATGAAAGAGGCGTT-3'
H3122		R: 5'-TACAAAGCGTGTTATCAAAACC-3'
H6339	$F L C 9(+5506$ to +5616$)$	F: 5'-ATGGAGAATAATCATCATGTG-3'
H6340		R: 5'-CTAATTAAGTAGTGGGAGAG-3'
H3123	$F L C 10(+5733$ to +5869$)$	F:5'-GTTTGTATATCTTAATACTCTCTCTTTGGC-3'
H3124		R: 5'-ATGCAATTCTCACACGAATAAG-3'
H2660	$F P A$	F: 5'-ACCAAGCACTACGATTGCAGC-3'
H2661		R: 5'-ACCTGAAGACTGTTGCTGCTG-3'
H2662	$F Y$	F: 5'-TCAAGGACAACCAAACAGTG-3'
H2663		R: 5'-TGCCTACTGATGTTGCTGATTG-3'
H2664	$F C A$	F: 5'-AGCAGCAACCGCTACAAAAGATG-3'

H2665		R: 5'-TGCGAGAACTGGCACAAAC-3'
H2821	FVE	F: 5'-TGCGAGAACTGGCACAAAC-3'
H2822		R: 5'-AGGCGAACCAACTCCATTAG-3'
H2823	FLK	F: 5'-ACGTCGGGTTCAAACATAAG-3'
H2824		R: 5'-TTGCTGCTCTGGTGCTAC-3'
H2825	$F L D$	F: 5'-ACGCAGTGACTCGTGTTC-3'
H2826		R: 5'-AGGGTATCGCCTTGTTG-3'
H2827	$L D$	F: 5'-TCGTCACAGGGTCCAAAAC-3'
H2828		R: 5'-TATAAAGGGCACGCATC-3
H2670	VRN2	F: 5'-ATGGACTTGTCGACTCAGCCAC-3'
H2671		R: 5'-TGTCATTCGGATGATCCACAATG-3'
H2672	VIP4	F: 5'-TGAAGAAGAGGAAGAGGTTGC-3'
H2673		R: 5'-TCGTCACTGTCATCAATCACG-3'
H2656	FRI	F: 5'-TGACTGAAGGAGGATTAGCTG-3'
H2657		R: 5'-TCTCATTCGAACCACTCATC-3'
H1248	FLC	F: ''-TCGCAACGGTCTCATCGA-3' $^{\prime}$
H1249		R: 5^{\prime}-GGCGGAGACGACGAGAAG-3'
H0999	$F T$	F: 5'-TACGAAAATCCAAGTCCCACTG-3'
H1000		R: 5'-AAACTCGCGAGTGTTGAAGTTC-3'
H0504	SOC1	F: 5'-AGGAACATGCTCAATCGAGG-3'
H0505		R: 5'-CTTATACACTCTCAGTACTGC-3'
H5028	SDG8	F: 5'-ACCTGACTTACTCCAATGAGATC-3'
H0723		R: 5'-TTAACTGTTGAGCTTCTTCTCTAAA-3'
H6529	CTD	F: 5'-AGCAAGCCCAGACTACAGC-3'
H6530		R: 5'-CAGGGTTGCCTTTATCATCC-3'
H0069	Tublin	F: 5'-GAGCCTTACAAGCTACTCTGTCTGTC-3'
H0070		R: 5'-ACACCAGACATAGTAGCAGAAATCAAG-3'

Primers for in situ hybridization

Number	Name	Forward (F) and reverse (R) primers
H0079	TOP1 α	T7: 5'-TAATACGACTCACTATAGGG-3'
H0080		Sp6: 5'-ATTTAGGTGACACTATAGAATACT-3'

Primers for cloning

Number	Name	Forward (F) and reverse (R) primers
H5603	SDG8	F: 5'-GCGTCGACCTAAAAAACCATGTTGGGGATTCA-3'
H5604		R: 5'-TTTTCCTTTTGCGGCCGCAAATTTAACTTTCAAACGAAGGC-3'
H5308	TOP $1 \alpha-1$	F :
H4036		5'-ATAAGAATGCGGCCGCCATGGGCACTGAAACAGTTTCAAAACC-3'
		R: 5'-CCGCTCGAGTTATTTCTTTTGCCCATCTCCAGAGGAAG-3'
H5309	TOP1 1 -2	F :
H4038		5'-ATAAGAATGCGGCCGCcAAATGGACTACTTTGGTGCACAACGG-3'
		R: 5'-CCGCTCGAGTTATCCCAAAAATACATACTTGAATTC-3'
H5310	TOP1 $\alpha-3$	F :
H4041		5'-ATAAGAATGCGGCCGCCCTTTTCAGAGGCCGTGGAGAACATCC-3'
		R: 5'-ACGCGTCGACACACACATGGTGCGCAAATTGAAAAATTG-3'
H5579	CTD	F: 5'-ACGCGTCGACaGTTTATCCCCAATGTCAGATGCAC-3'
H5580		R: 5'-ATAGTTTAGCGGCCGCCAGGGTTGCCTTTATCATCCTTAC-3'
H3109	FLC	F: 5'-ACGCGTCGACATGGGAAGAAAAAAACTAGAAATC-3'
H3110		R: 5'-TTTTCCTTTTGCGGCCGCCTAATTAAGTAGTGGGAGAG-3'

