
1 Mathematical model

We use a computational hybrid model based on that presented in McLennan et al. (2012, 2015a,b,

2017). The model is a two-dimensional approximation of the system and consists of a discrete, off-

lattice model for the dynamics of neural crest cells that is coupled to a continuum, reaction-diffusion

model for the dynamics of chemoattractant (VEGF). We implement the model using Aboria (Robinson,

2017, https://martinjrobins.github.io/Aboria/), a C++ library for particle-based numerical methods.

1.1 Dynamics of cells

We describe briefly how we incorporate the dynamics of cells. We assume that there are two types

of cells, namely “leaders” and “followers”. Leaders undertake a fixed-jump-length biased random walk

up a cell-induced gradient of chemoattractant. To model the cells extending filopodia to sense the

concentration of chemoattracant at their tips we simply sample the concentration at a certain number

of points a fixed distance away from the center of a cell in randomly chosen directions, and then move

the cell in the direction of the highest concentration sensed, provided it is sufficiently higher than the

chemoattractant concentration at the position of the center of the cell. If this is not the case, we move

the cell in a random direction. On the other hand, followers are either in chains or they move randomly.

A chain consists of a group of followers that are close to each other, with at least one of them close

to a leader. All the followers in a chain move in the same direction as the leader that is at the front of

that chain. If a follower is able to follow more than one cell, i.e. it could join multiple chains, it randomly

chooses one to join.

In addition to this model of cell guidance, we implement a simplistic model of tunneling in the extracel-

lular matrix (ECM). Our experimental results show that overexpression of AQP-1 induces an increase

in MMP activity which, in turn, results in ECM degradation. In our model we assume that enhanced

ECM degradation results in the creation of tunnels in the ECM. We implement a very simplistic model

of this tunneling mechanism by recording the history of leader positions, which we define as a “tunnel”.

If a follower is sufficiently close to a tunnel, then it starts moving along that tunnel towards the front

of the stream. If a cell is sufficiently close to more than one tunnel, then it enters the closest tunnel.

We assume that guidance via “chains” dominates the tunneling mechanism, i.e. if a follower cell is in a

chain then it does not search for a tunnel.

We include phenotype switching based on the position of a cell within a migratory stream. We make

a simplification from the previous model by McLennan et al. (2015a) and assume that the phenotype

is determined based on cell position rather than VEGF concentration. This simplification is consistent

with the experimental observation that gene expression profiles depend on the position of a cell within a

migratory stream, with a small number of leaders at the very front of the stream where the concentration

of VEGF is the highest (McLennan et al. 2015a). A constant number of leaders is a reasonable as-
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sumption in our model because we do not model the system with experimental perturbations in VEGF

distribution that have been shown to alter the number of leaders (McLennan et al. 2015b).

1.2 Model assumptions

We now list the key assumptions used in the model. Firstly, we use a fixed time-step model (∆t =

1min) during which a cell senses its environment and updates its position. Secondly, we model volume

exclusion by considering cells as hard-discs that are not allowed to overlap (in reality, cells will deform

when they come in contact, so this is a model simplification). If a cell cannot make a movement due

to volume exclusion, i.e. the target destination is occupied by other cells, then it remains in the same

position. Thirdly, we assume that only the center of the cell has to be inside the rectangular domain

(Figure 7H), not the entire cell body. We allow a cell to extend filopodia outside the domain but, in our

model, this never leads to a movement in that direction. If all the filopodia of a cell are extended outside

the domain and the random direction sampled leads to a movement outside the domain, then the cell

does not move. These are the boundary conditions for cells everywhere apart from the neural tube (x

= 0) where there is an influx of cells. There is an attempt to insert a new cell at every time step with a

center at a random position along the y axis and x = cell radius (that is, the cell is placed fully inside the

domain). Lastly, we assume that when cells enter tunnels they move in the direction towards the front

of the stream, which means that we assume that there is another guidance cue in tunnels that directs

the cells.

1.3 Model features

Filopodia stability, filopodia polarity, filopodia number and ECM degradation rate are new features of the

model that we investigate. Filopodia stabilization is implemented here by allowing a leader to sample its

environment only every three time steps and in between specifying the cell to move persistently, as op-

posed to sampling and potentially moving in a different direction each time step. Filopodia polarization

entails a leader only stabilizing its filopodium when it makes an informed movement towards a higher

concentration of VEGF, as opposed to a movement in a random direction. Filopodia number is the

number of random directions a leader samples per time step. We incorporate enhanced ECM degra-

dation by the tunneling mechanism described above, i.e. tunnels generated by the leaders correspond

to enhanced ECM degradation. We consider a suite of models to explore the effects of combinations

of different experimental perturbations. We label them as “Model x” (x from 1 to 11) and the values of

parameters and features for the different models can be found in Table 1.
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1.4 Domain

We use a rectangular two-dimensional domain (x, y) ∈ [0, Lx(t)]× [0, Ly] as a simplification of a narrow

(in height) curved three-dimensional migratory path (Figure 1). We fit the following equation to model

the growth of the domain in the x direction:

Lx(t) =
L∞e

a(t−ts)

L∞/L0 + ea(t−ts) − 1
+ k0, (1)

with a = 0.23h−1µm−1, ts = 15.9h, L∞ = 867.6µm, L0 = 300.0µm and k0 = 291.2µm inferred from

experimental results (McLennan et al. 2012).

1.5 Chemoattractant dynamics

We use a reaction-diffusion equation to model the dynamics of the chemoattractant VEGF based on

the work of McLennan et al. (2012, 2015a,b, 2017). We scale the concentration of VEGF, c(x, y, t), to

c ∈ [0, 1] and define the equation on the growing domain with x ∈ [0, Lx(t)] and y ∈ [0, Ly] (parameter

values in Table 1):

∂c

∂t
= D

(
∂2c

∂x2
+
∂2c

∂y2

)
︸ ︷︷ ︸

(1)

− c
N(t)∑
i=1

λ

2πR2
exp

[
− (x− xi)2 + (y − yi)2

2R2

]
︸ ︷︷ ︸

(2)

+κc(1− c)︸ ︷︷ ︸
(3)

− ∂(ac)

∂x︸ ︷︷ ︸
(4)

, (2)

where D is the diffusion coefficient of the chemoattractant, R is the cell radius, λ is the internalization

rate, κ is the production rate of the chemoattractant, a is the flow due to domain growth, N(t) is the

number of cells at time t and (xi, yi), i = 1, . . . , N(t) is the position of the center of cell i. We assume

zero flux boundary conditions and initial conditions c(x, y, 0) ≡ 1. Zero flux boundary conditions are

assumed to incorporate a wide and representative stream profile with no loss of chemoattractant from

the system. We assume a uniform initial condition based on the observations of McLennan et al. that

prior to NC migration VEGF is spatially uniform in the tissue up to the entrance to BA2 (Figure 1)

(McLennan et al., 2010).

We briefly explain the reasoning behind the terms on the right-hand side of equation (10). Term (1)

corresponds to diffusion of chemoattractant with diffusion coefficient D. Term (2) is the internalization

of chemoattractant by cells. We use a simple Gaussian kernel because it takes into account the size

of cells, and we assume that the cells consume or degrade chemical with a continually decreasing

intensity moving away from the cell center. Term (3) is the production of chemoattractant. We assume

logistic production, however, since the production rate, κ, is relatively small in comparison with the

internalization rate, λ (see McLennan et al., 2010), the dynamics do not change significantly when other

forms of production, such as linear or constant, are considered. Term (4) corresponds to the effect of

domain growth. It consists of the advection term, a× ∂c/∂x, corresponding to elemental areas moving

with the flow due to local growth, and a dilution term, c × ∂a/∂x, due to local area change. Assuming
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that the flow can be specified using a growth function Γ, the Lagrangian description is

x = Γ(X, t), x ∈ [0, Lx(t)] (3)

where X is an initial position marker, and Γ(X, 0) = X. The local flow is determined by

a(x, t) =
∂x

∂t
=
∂Γ

∂t
, (4)

(Crampin et al., 1999). Since in our model we assume, for simplicity, that the uniform growth is in one

direction (the x direction), the growth function is given

Γ(X, t) = Xl(t) = x, l(0) = 1, (5)

where l(t) is rescaled domain length, l(t) = Lx(t)/L0 with L0 = Lx(0). Then the flow is determined by

a(x, t) = Xl̇(t) = x
l̇(t)

l(t)
, (6)

where · denotes d/dt . Substituting expression (6) into equation (2), we find

∂c

∂t
= D

(
∂2c

∂x2
+
∂2c

∂y2

)
− c

N(t)∑
i=1

λ

2πR2
exp

[
− (x− xi)2 + (y − yi)2

2R2

]
+ κc(1− c)− l̇

l

[
x
∂c

∂x
+ c

]
, (7)

We use the following transformation to map the coordinates to the unit interval

(x, t)→ (x̄, t̄) =

(
x

l(t)
, t

)
. (8)

Under this mapping
∂c

∂t̄
=
∂c

∂t
+ x

l̇

l

∂c

∂x
, (9)

which leads to the elimination of the advective term in equation (7). Therefore, if we use the transfor-

mation (8), but for the sake of simplicity now drop the bars, then equation (7) becomes

∂c

∂t
= D

(
1

l(t)2
∂2c

∂x2
+
∂2c

∂y2

)
− c

N(t)∑
i=1

λ

2πR2
exp

[
− l(t)

2(x− xi)2 + (y − yi)2

2R2

]
+ κc(1− c)− l̇(t)

l(t)
c. (10)

Equation (10) is valid on the fixed domain x ∈ [0, L0] and y ∈ [0, Ly]. Recall that we assume zero flux

boundary conditions and initial conditions c(x, y, 0) ≡ 1.

We solve equation (10) using a finite difference method (second-order centred differences in space, and

forward Euler in time) with ∆x = 10µm, ∆y = 10µm and ∆tc = 1min. These choices are sufficient for

the algorithm to have converged and resolve accurately the gradient of VEGF. Note that a time step of

1min is equivalent to the discrete simulation time step for the cell motility model (see Table 1), which is

sufficient for the simulations to converge.

1.6 Pseudocode

We provide a pseudocode that explains in detail how we numerically simulate the model. The text in blue

corresponds to the steps that are only applicable for the model with a tunneling mechanism included.
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The full code is available at https://github.com/rginiunaite/NC-cells.git. We provide two versions of the

code: NC-model (Models 1-9), where the interactions between the cells in the NC-model are only by

chains; NC-model-tunneling (Models 10,11) where interactions are by both chain and tunneling mecha-

nisms. Note that a user first needs to install the Aboria library (https://martinjrobins.github.io/Aboria/).

Main steps

1. Initialise model parameters and insert Nleader leader cells at x = R and equal distance apart in

the y direction, set t = 0.

2. Choose a random position in y with x = R. If there is no overlap with other cells, insert a new

follower cell at this position.

3. Solve chemoattractant profile.

4. Grow domain, update cell positions (multiply the position of a cell in the x direction by the ratio of

current domain length over the domain length in the previous timestep).

5. Move cells.

6. Implement any phenotype switching.

Internal steps

move cells (Note that if a cell cannot move due to volume exclusion (R - radius of a cell) then the

attempted movement is aborted)

1. for i = 1 to number of cells do

2. pick a cell at random without replacement

3. if the cell is a leader, then

4. if filopodium is stabilized and the cell has not finished moving three steps in the same

direction, then

move a distance ∆t× ν in the same direction as before end if

5. if there is no filopodia stability mechanism or the cell has finished moving three steps in

the same direction, then

6. pick nfilo random directions and measure chemoattractant concentration in those

random direction(s) at distance lfilo away from the center of the cell, pick the highest

concentration and set it to cnew, measure chemoattractant concentration at the center

of the cell and set it to cold

7. if cnew−cold√
cold

≥ ξ (sensing accuracy), then

8. move in chosen direction a distance ∆t× ν, stabilize filopodium (if stabilization

mechanism is on)

9. end if

10. else

11. move in random direction a distance ∆t× ν, stabilize filopodium (if stabilization
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mechanism is on and the stabilization is non-polar)

12.

13.

14.

end if

end if

record the position of a leader if the cell is a distance s apart from the previous position 

tracked and less than nt positions are recorded, define it as a “tunnel”

15. end if

16. else (the cell is a follower)

17. if the cell is in a chain, then

18.

19. filo

move a distance ∆t × ratio × ν in the same direction as the leader at the front of the 

chain

if the cell is further away than lmax from the cell which it was following, then

20. detach it, and all the cells that were following it, from the chain

21.

22.

23.

end if

end if

if the cell is not in a chain, then

24. if there is a leader or a follower in a chain less than lfilo distance away, then

join that chain (if there are multiple possibilities, pick one randomly) and move

25.

a distance ∆t × ratio × ν in the same direction as the cell ahead in the chain 

end if

26.

27.

else if the cell is less than threshold distance d from one of the tunnels (if there are 

multiple tunnels, pick the closest), then move a distance ∆t × ratio × ν along the tunnel 

end if

else move a distance ∆t × ratio × ν in a random direction

28. end if

29. end for

phenotype switching

1. if a cell is a follower then

2. if the cell is further ahead by ε in the x direction than one of the leaders and it is sufficiently 

close to that leader, then swap their phenotypes end if

3. end if

1.7 Model parameters

We choose most of our parameters based on those from McLennan et al. (2015a,b, 2017). We adapt

some of the parameters to recapitulate the experimental results for the control case (Model 1), AQP-1

overexpression (Model 2) and AQP-1 downregulation (Model 3). Table 1 contains the values we used
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for the computational results of this paper.

Comments

• We use a fixed-jump-length process where the length of the jump is ∆t × ν for leaders and ∆t ×

ratio× ν for followers.

• Nleader - number of leaders. We choose a fixed number of five leaders because we find that this

is the smallest number of cells that can guide the rest of the population successfully (either by

chains or tunnels, results not shown). A higher number of leader cells could be chosen provided

that we adjust the internalization rate, the sensing accuracy and the diffusion coefficient to avoid

some leaders getting stuck due to the lack of a gradient of chemoattractant.

• ratio - ratio of follower to leader speed. Kulesa et al. (2008) demonstrated that the speed of the

followers is higher than that of the leaders. We chose a ratio value sufficiently high to ensure that

the stream does not break in the control case.

• lfilo - sensing radius. We use the value calculated by McLennan et al. (2015) as the sum of the

cell radius and the mean filopodial length.

• lmax
filo - maximum cell separation before contact is lost. We use the value calculated by McLennan

et al. (2015), obtained from half of the maximum cell size including filopodium.

• ξ - sensing accuracy. We use the same argument for the accuracy with which the cells can sense

a chemical gradient as McLennan et al. (2012, 2015, 2015, 2017). They base their work on the

biophysical limit for sensing accuracy derived by Berg and Purcell (1977). Briefly, they assume that

fluctuations in molecule number are proportional to
√
N , where N is molecule number. Since we

use a continuum variable for the chemoattractant, fluctuations can be expressed as
√
Ac where

A is some area of interest, and c is the average concentration in that area. The inaccuracy of

concentration measurements is inversely proportional to fluctuations, which gives

∆c

c
≈ 1√

N
=

1√
Ac
. (11)

Rearranging gives
∆c√
c
≈ ξ, (12)

where we define ξ as the sensing accuracy, and ∆c = cnew − cold. ∆c/
√
cold has to be greater or

equal than ξ for the cell to respond. We choose ξ sufficiently high to ensure that movement does

not occur in response to very small changes in VEGF concentration. The results are robust if we

change this parameter together with the internalization rate λ.

• D - diffusion coefficient of chemoattractant. The exact value of the diffusion coefficient is unknown

for the system. We use a relatively small value because it has been shown that only around 1% of

VEGF freely diffuses, whilst the rest binds to the ECM (Mac Gabhann et al. 2006). The results are

robust to changes in this parameter because it only affects the sharpness of the gradient of VEGF.
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Changes in the internalization rate, λ, and the sensing accuracy, ξ, also influence the choice of

the diffusion coefficient.

• χ - production rate of chemoattractant. The exact VEGF production rate in the tissue is unknown,

but since experimental results show that there is almost no VEGF produced where the cells have

already internalized it (McLennan et al. 2010), we assume that the production rate is small.

• λ - chemoattractant internalization rate. The internalization rate is also unknown, we choose this

parameter based on the distance traveled by cells in 24h. The results are robust to simultaneous

changes in the sensing accuracy, ξ, and the internalization rate, λ, therefore we adapted the

internalization rate to our chosen sensing accuracy, ξ.

• ε - distance a follower has to be ahead of a leader to swap phenotypes. As discussed in Section

1.4, we use a simplified version of the switching mechanism based on the position in the stream.

We assume that a follower has to be ε = 10µm ahead of a leader for their phenotypes to swap.

The results are robust to changes in this parameter because we have a fixed number of leaders.

• d - threshold distance to tunnel to enter it. This parameter has to be chosen carefully with respect

to the distance between leader positions that we record, s. It is advisable that d is at most s/2,

so that a cell is not too close to two tunnel positions at the same time, in which case it randomly

chooses which one to start moving along. However, it is unrealistic to choose d� 10µm because

we need to incorporate the width of a tunnel.

• s - track spacing. This is a parameter that determines the distance between leader positions that

we record, corresponding to a “tunnel”. We choose a small value to represent a continuous tunnel

on a scale of cell sensing, but not too small to avoid high computational costs. The model is robust

to smaller values of s (s < 20µm), but not for significantly larger values.

• nt - number of leader positions tracked. We have to choose this parameter sufficiently large so

that tunnels extend along the entire domain. We find that if a tunnel is shorter than the length of

the domain, then the likelihood of the stream to break is increased.
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Figure S1. (A) No probes control for RNAscope experiment. (B) Quantification of AQP-

1 RNA expression in chick embryonic fibroblasts (CEF), chick liver hepatocellular 

carcinoma (LMH) and LMH transfected with AQP-1 FL. (C) Quantification of AQP-1 

RNA expression in LMH cells after mock transfection, pMES transfection and AQP-1 FL 

transfection. (D) Box plot of the Speed (microns/hr) of neural crest cells, transfected 

with pMES control vector (black, n= 27 cells from n=9 neural tube explants), non-

transfected but in the same cultures as pMES (blue, n=26 cells) and transfected with 

AQP-1 FL in different cultures but prepared and imaged the same days as controls (red, 

n=33 cells from n=10 neural tube explants).  (E) Box plot of the distance migrated by 

neural crest cells after mesodermal injections of AZA (red) and the distance migrated by 

neural crest cells on the control sides of the same embryos (black), n=6 embryos. (F) 

Box plot of the percentage of neural crest cells that migrate into the branchial arches, 

n=8 embryos per treatment. (G) The entire zymogram that is quantified in Figure 5. An 

image of the ladder (left) was taken prior to development so that it could be clearly 

seen.  Proteins in these assays do not run exactly the same as the markers as enzymes 

in the samples are not reduced while the markers are (Woessner, 1995). The band size 

is approximately 62 kD, corresponding to MMP2 (Anderson, 2010). 
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Figure S2:  Filopodia direction and length with respect to neural crest migratory 

direction. (A) Distribution of angles of filopodia for control (black), AQP-1 FL 

overexpression vector (green) and the AQP-1 MO (red) labeled cells. Radial magnitude 

equals number of filopodia in that direction. (B) Length and direction of the filopodia for 

cells labeled with control vector, AQP-1 FL overexpression vector or AQP-1 morpholino.  

Radial magnitude equals length of the filopodia in microns and angle is with respect to 

migratory direction. Contrasting colored filopodia are in a 30° window around the 

direction of migration. (C) Example neural crest filopodia with direction of migration 

indicated. Direction of migration is always set to 0 degrees.  
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Figure S3: Schematic of a rectangular domain we used to model the domain on which 

the neural crest cells migrate (black circles). They enter the domain from the neural tube 

(x = R). BA2 denotes branchial arch 2. 

 

 

 

Table S1: Genes that are differentially expressed between pMES (control) and AQP-1 

FL. 

Click here to Download Table S1 
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Table S2: Model parameters used in the simulations provided in the results section. 
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Movie 1: Cranial neural crest cell migratory behaviors are altered in vitro after 

AQP-1 manipulation. (top) Control migrating neural crest cells exposed to DMSO. 

(middle) AQP-1 was inhibited by adding Acetazolamide (AZA) to the media. AZA was 

solubilized in DMSO. (bottom) AQP-1 was overexpressed by transfection of AQP-1 full 

length construct (green cells).  Cranial neural tube explants are shown on the left-hand 

side of each panel. Time intervals between images ranged from 2.5 to 4 minutes and 

frame speed was adjusted so that each time-lapse was 8 hours in duration. Scale bar= 

30 um. 
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Movie 2:  Cranial neural crest cell migratory behaviors are altered in vivo after 

AQP-1 manipulation. (Left) Premigratory neural crest cells were transfected with 

Gap43-YFP/H2B mCherry (control). (Right) AQP-1 full length/H2B mCherry. Z-stacks 

were collected every 5 minutes and approximately 6 hours is shown. Scale bar= 20 um. 

  

Development: doi:10.1242/dev.185231: Supplementary information

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n

http://movie.biologists.com/video/10.1242/dev.185231/video-2


 

 

Movie 3: Fast confocal imaging reveals changes in neural crest cell filopodial 

dynamics after AQP-1 manipulation. Projected images from spinning disk time-lapse 

microscopy of migrating lead neural crest cells in whole embryo culture electroporated 

with either (top) pMES control, (middle) AQP-1 FL or (bottom) AQP-1 Morpholino 

(MO).  Each movie sequence shows the cell membrane label (Gap43-mTurquoise2) to 

highlight the cell protrusion dynamics. Images were collected in 30 second intervals and 

shown here for approximately 11 min.   
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Movie 4: Cranial neural crest cell directionality is altered after AQP-1 

manipulation. Premigratory neural crest were transfected with pMES (control) or AQP-

1 FL and neural tubes were plated in the presence of branchial arch 2 (ba2) tissue as a 

source of known endogenous chemoattraction. Images were collected every 5 minutes 

and a total of approximately 18 hours of elapsed time is shown. Scale bar= 50 um. 
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Movie 5: Computer model simulations of cranial neural crest cell migration with 

AQP-1 manipulation. (top) Control migration is modeled by normal cell speed and 

unstable filopodia.  (middle) AQP-1 loss-of-function is modeled by reduced cell speed 

and reduced number of cell filopodia. (bottom) AQP-1 gain-of-function is modeled by 

increased cell speed, stable cell filopodia and tunneling. Each simulation is run on a 2D 

migratory domain.  
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