Supplementary Materials and Methods:

Permutation tests (\mathbf{R} script):

The functions takes 4 arguments: a vector (x) containing all the angular observations; a vector (subject) of the same length that specifies from which mouse each observation comes from; another vector (Group) of the same length that specifies to which group the mouse belongs; and finally the number (B) of permutations to be run to calculate the p value. Note: Install the R package 'circular' (https://www.rdocumentation.org/packages/circular.) before running tests.

To test changes in mean orientation:
angular.meanG.test<-function(x,subject,Group,B)
\{

```
    m<-length(x)
    s<-levels(as.factor(subject))
    ns<-length(levels(as.factor(subject[Group==levels(as.factor(Group))[1]])))
    observed<-abs(mean.circular(x[Group==levels(as.factor(Group))[1]])-
mean.circular(x[Group!=levels(as.factor(Group))[1]]))
    differenza<-NULL
    for(i in 1:B)
    {
    bs<-sample(s,length(s),replace=F)
    sx<-bs[1:ns]
    group1<-x[subject %in% sx]
    group2<-x[subject %in% bs[-c(1:ns)]]
    differenza<-c(differenza,abs(mean.circular(group1)-mean.circular(group2)))
```

\}

```
return((sum(differenza>observed)+1)/(B+1))
}
To test changes in variance:
angular.IntraVarG.test<-function(x,subject,Group,B)
{
    m<-length(x)
    s<-levels(as.factor(subject))
    ms<-tapply(x,as.factor(subject),mean.circular)
    Cx<-x
    for(i in 1:length(s))
    { cx[subject==s[i]]<-x[subject==s[i]]-ms[i]
    }
    ns<-length(levels(as.factor(subject[Group==levels(as.factor(Group))[1]])))
    observed<-abs(var.circular(cx[Group==levels(as.factor(Group))[1]])-
var.circular(cx[Group!=levels(as.factor(Group))[1]]))
    diff<-NULL
    for(i in 1:B)
    {
    bs<-sample(s,length(s),replace=F)
    sx<-bs[1:ns]
    group1<-cx[subject %in% sx]
    group2<-cx[subject %in% bs[-c(1:ns)]]
    diff<-c(diff,abs(var.circular(group1)-var.circular(group2)))
}
```

Figure S1

Figure S1. Expression of Whtless (WIs) and Porcupine (Porcn) in the embryonic cochlea. (a-b) Sections of E18.5 cochlea showing expression of WIs protein in the basal and apical turns. Sox2 marks hair cells and supporting cells in the organ of Corti. c) Whole mount preparation of E18.5 cochlea immunostained for WIs and the junctional marker ZO-1. At this age, WIs expression was detected primarily in supporting cells in the organ of Corti. d) WIs mRNA expression within and outside the E18.5 cochlear duct. (e-f) Positive (Polr2a) and negative (DapB) control in situ hybridization experiments on E18.5 cochlea. (g) Porcn mRNA was also detected inside the E16.5 cochlear duct. Hematoxylin staining was used as a counterstain in (d-g). Dashed lines and brackets highlight the cochlear duct and organ of Corti, respectively. OHC=outer hair cells, IHC=inner hair cells, GER= greater epithelial ridge. Each experiment was repeated at least three times on wild type cochleae.

Figure S2

Figure S2. Morphological abnormalities in WIs cKO embryos. (a) E14.5 cochlea from Emx2 $2^{\text {Cre/+ }}$; Rosa26 $6^{\text {tdTomato/+ }}$ mice. Robust tdTomato expression was detected inside the cochlear duct (marked by dashed lines). DAPI (blue) was used to label nuclei. (b) E16.5 control embryos $\left(E m x 2^{\text {Cre/ }+} ;\right.$ Wls $\left.^{+/ f l}\right)$. Ventral view of the head (b'), upper limbs (b") and lower limbs (b"'). (c) Otic capsule from E18.5 control embryos. Bracket marks the cochlea. (d) E16.5 WIs cKO embryos (Emx2 ${ }^{\text {Cre// }}$; WIs ${ }^{\text {f/f/ }}$) showing craniofacial defects (d'), and underdeveloped upper (d") and lower (d'") limbs. (e) Otic capsule of E18.5 W/s cKO displaying a short cochlea. Three control and WIs cKO animals were analyzed.

Figure S3

Figure S3. Ablation of WIs from the embryonic cochlear duct. (a-b) Cochlear sections from E13.5 control cochlea (Emx2 $\left.{ }^{\text {Cre/ } / ; ~ W / s ~}{ }^{+/ f l}\right)$, displaying WIs immunofluorescence in the cochlear duct. In contrast, Wis expression was absent in the cochlear duct of WIs cKO (Emx2 ${ }^{\text {Cre/f. }}$; WIs $s^{f / f /}$) mice. Of note, WIs expression was detected outside the duct in both control and WIs cKO cochleae. The prosensory marker Sox2 was present in both control and WIs cKO cochleae. (c-f) WIs in situ hybridization in sections from the middle and apical turns of E18.5 control and WIs cKO cochleae. Wls mRNA was detected in the control cochlea but absent in W/s cKO cochlear duct. Higher magnification images of the organ of Corti (marked by brackets) are shown in ($c^{\prime}, d^{\prime}, e^{\prime}$ and f^{\prime}). See Supplementary Figure 5 for location of the organ of Corti in Wls cKO cochlea. (g-h) Positive (Polr2a) and negative (DapB) control probes are shown in WIs cKO cochlear tissues, respectively. Dashed lines demark the cochlear duct. Hematoxylin (blue) was used to label nuclei. Each experiment was repeated at least three times.

Figure S4

n

Figure S4. Genetic ablation of Porcn from the embryonic cochlear duct. (a-f) In situ hybridization (ISH) showing Porcn mRNA expression throughout the basal (a), middle (c) and apical (e) turns in sections of control (Pax2 ${ }^{\text {Cre/ } / ; ~ P o r c n ~}{ }^{+/ f l}$) cochleae. (a') high magnification image of the organ of Corti (brackets) showing Porcn mRNA expression. In contrast, Porcn mRNA signal was drastically reduced in each turn in Porcn cKO cochleae (Pax2-Cre; Porcn ${ }^{\text {fly }}$) (b, d and f), including the organ of Corti (b^{\prime}). Dashed lines highlight the cochlear duct. (g-j) ISH using negative (DapB) and positive (Po/r2a) control probes in control (g and i) and Porcn cKO tissues (h and j). Hematoxylin was used as a counterstain in the ISH experiments. In situ probes that hybridize within the floxed exons 3-7 of Porcn were used. ($k-l$) Whole mounts of control (k) and Porcn cKO (I) cochleae labeled for Myosin7a (hair cells) and F-actin. Porcn cKO cochlea displayed hair cells but appeared dysmorphic and short. Detection for Porcn mRNA, Myosin7a and F-actin in control and Porch cKO cochleae was repeated at least three times. (m) qPCR of Porcn mRNA showing a significant decrease in Porcn cKO cochleae relative to controls (n) Porcn cKO cochleae were significantly shorter than controls. Two-tailed t test, * $P<0.05,{ }^{* * *} \mathrm{P}<0.001$. Data shown as mean \pm S.D. GER=Greater epithelial ridge.

Figure S5

Figure S5. Wls is dispensable for hair cell specification. (a-b) In situ hybridization for Atoh1 mRNA in sections of E18.5 control and WIs cKO cochleae. Atoh1-positive hair cells (red arrows) were found in each turn of E18.5 control cochlea. Middle (a') and apical (a") turns shown. Though severely dysmorphic, WIs cKO cochleae similarly displayed Atoh1-positive hair cells. Middle (b') and apical (d") turns shown. Brackets mark the organ of Corti. Sections were counterstained with hematoxylin (blue). (c-d) Immunostaining showing Myosin7a expression along the length of both control and W/s cKO cochleae (E18.5). WIs cKO cochleae appeared dysmorphic and short relative to controls. Each experiment was repeated at least three times.

Figure S6

Figure S6. Bundle orientation defects in WIs and Porcn cKO cochleae. (a-b) E18.5 whole mount cochleae labeled for Ar113b (kinocilium) and F-actin (stereocilia bundles) (middle turn shown). Control cochleae displayed three rows of OHCs and one row of IHCs and stereocilia bundles arranged along the mediolateral axis of the cochlea. In contrast, WIs cKO cochleae exhibited supernumerary rows of OHCs and IHCs displaying stereocilia bundles deviated from the mediolateral axis. Panels (a') and (b') show the orientation of individual hair cells in control and WIs cKO cochleae, respectively. (c-d) Rose plots depicting the distribution and measurements of stereocilia bundle orientation in control and WIs cKO tissues. In comparison to each row of OHCs and IHCs in control cochleae, the variability in the stereocilia bundle orientation of HCs from the WIs cKO cochlea was significantly increased. The OHC3+ group included cells from the OHC3 row and OHCs more laterally located. Individual HCs were grouped and plotted into bins 15 degrees wide. The length of each petal represents the number of HCs therein, with the number of the longest petal (also the radius of the outer circle) stated. Radius of inner circle is half of the outer circle. Zero degrees designate the mediolateral axis. Circular mean and circular standard deviation shown in blue and red lines, respectively. (e-h) E18.5 control (Pax2 ${ }^{\text {Cre/f }} ;$ Porcn $^{+/ f / l}$) and Porcn cKO (Pax2 ${ }^{\text {Cre/ } / \text {; }}$ Porch ${ }^{f / y}$) cochleae labeled for the basal body (Pericentrin), kinocilium (Arl13b), and Factin (phalloidin). Basal body/kinocilium were localized to the lateral pole of hair cells in control cochleae and stereocilia bundles were aligned with the mediolateral axis. Basal (e) and middle (f) turns shown. (g-h) On the other hand, Porcn cKO cochlea displayed supernumerary IHCs and OHCs (dashed lines), and HCs with defective stereocilia bundle orientation and basal body/kinocilium positioning. Arrowheads mark misoriented HCs. Basal (g) and middle turns (h) shown. n=number of hair cells analyzed from 3 control and WIs cKO cochleae. Permutation test of equality of variances used.

Figure S7

Figure S7. Aberrant localization of planar cell polarity core components in WIs cKO cochlea. (a) Cartoon depicting the asymmetric localization of core PCP proteins along the mediolateral axis of hair cells. (b) Representative images acquired from the middle turn of E 18.5 control cochlea ($\mathrm{Em} \times 2^{\text {Cre/+ }} ;$ Wls $^{+/ f / \text { I }}$). Fz6 (red arrowhead) and Dv12 (white arrowhead) were localized to the medial and lateral poles of hair cells (HCs), respectively. Co-staining with the cell junction protein ZO-1 (blue) is shown in panel (b"). (c) No asymmetric localization of Fz6 and Dvi2 was observed in HCs in W/s cKO cochlea (Emx2 ${ }^{\text {Cre/t }}$; W/s $s^{\text {t/f/f) }}$. Higher magnification of (b") and (c") are shown in (b"') and (c"'), respectively. (d) Control cochleae showed Fz3 (green, arrowheads) localized to the medial poles of F-actin-positive HCs. (e) In contrast, no asymmetric localization of Fz3 was observed in Wls cKO cochlea. Insets (white boxes) in control (d') and Wls cKO cochleae (e') are shown in (d") and (e"), respectively. (f-g) In control cochlea, Dv11 signal was mainly detected at the medial junctions of HCs with adjacent supporting cells (arrowheads). No asymmetric localization of Dvl1 was observed in HCs in WIs cKO. Higher magnification of insets in (f) and (g^{\prime}) are shown in ($\mathrm{f}^{\prime \prime}$) and ($\mathrm{g}^{\prime \prime}$), respectively. (h) Co-staining for Dvl3 with ZO-1 indicated localization of Dvl3 to the lateral side of HCs in both control and WIs cKO cochleae. (j-m) Comparable expression patterns of Vangl1 and Celsr1 were observed in both control and WIs cKO cochleae. Peanut agglutinin (PNA) and phalloidin marked F-actin-enriched HC bundles.

Figure S8

Figure S8. Abnormal localization of planar cell polarity core proteins in Porcn cKO cochlea. (a-b) Whole mount cochleae from E18.5 control (Pax2 ${ }^{\mathrm{Cre} /+} ; \mathrm{Porcn}^{+/ f)}$) and Porcn cKO (Pax2 ${ }^{\text {Cre/+ }} ;$ Porcn $^{f / y}$) mice immunostained for Fz6 (red), Dvl2 (green) and ZO1 (blue). Control cochleae showed expression of Fz6 (red arrowhead) and Dvl2 (white arrowhead) restricted to the medial and lateral poles of HCs, respectively. In contrast, localized expression of Fz6 (b) and Dvl2 (b') was sharply decreased in Porcn cKO cochlea. High magnification images of insets (white boxes) in panels (a") and (b") are shown in (a'") and (b"'"), respectively.

Figure S9

e

f

g

h

Base

Figure S9. Aberrant kinocilium positioning in WIs cKO cochlea. (a-d) Cochlear whole mounts stained for Arl13b, Rpgrip1L and F-actin to label the kinocilium, transitional zone and stereocilia bundles, respectively. Basal and middle turns shown. In control cochlea (Emx2 ${ }^{\mathrm{Cre/} /}$; W/s ${ }^{+/ f /}$), both Arl13b and Rpgrip1L (arrowheads) were located at the lateral pole of OHCs and IHCs and stereociliary bundles were uniformly oriented along the mediolateral axis. In contrast, WIs cKO (Emx2 ${ }^{\text {Cre/+. }}$; WIs ${ }^{f / f / f) \text { tissues }}$ showed malpositioned kinocilium (arrowheads) and misoriented stereocilia bundles (b and d). Higher magnifications of insets (white boxes) in (a-d) are shown in (a'-d'). (e) Scatter plots of kinocilium position (based on Rpgrip1L expression) in hair cells from basal turn of E18.5 control cochlea. Kinocilium positions were tightly clustered at the lateral pole of each row of hair cells. (f) In WIs cKO cochlea, the kinocilium position was more scattered in comparison to controls. The OHC3+ group included cells from the OHC3 row and OHCs more laterally located. In the scatter plots, concentric circles indicate relative distance from the center of the apical surface of HCs. n=HC number analyzed from 3 control and WIs cKO cochleae. (g-h) The angular position of kinocilium and the angle of stereocilia bundle orientation were highly correlated in both control (Pearson $_{\text {circular }}$ correlation test, $\mathrm{r}=0.82, \mathrm{n}=386, \mathrm{p}<0.001$) and W/s cKO cochleae (Pearson $_{\text {circular }}$ correlation test, $r=0.76, \mathrm{n}=434, \mathrm{p}<0.001$).

Figure S10

Figure S10. WIs is dispensable for the asymmetric distribution of intrinsic polarity proteins. (a) Cartoon depicting the asymmetric distribution of intrinsic polarity proteins in the apical surface of HCs. LGN and Gai3 are both located on the lateral side and Pard6 on the medial side of hair cells. (b-c) In control (Emx2 ${ }^{\text {Cre/ }} ; \mathrm{Wls}^{+/ f l}$) and WIs cKO
 side of hair cells. Bundles were stained for F-actin (red). (d-e) Gai3 was found localized to the lateral side of HCs in both control and WIs cKO tissues. (f-g) Pard6 was localized to the medial side of HCs in both control and WIs cKO cochleae.

Figure S11
a

Mid
Apex

Figure S11. Expression of Wnt ligands in E16.5 cochlear duct. (a) qPCR of Wnt ligands during cochlear development. $\mathrm{n}=3$ for each age group. (b-b") In situ hybridization detecting a low level of Wnt2b mRNA in the medial aspect of the cochlear duct (marked by dashed line) in the middle turn. (c-c") A distinct Wht4 expression domain was observed in the medial cochlear roof, most notably in the basal and middle turns. (d-d") Wnt5a was robustly expressed throughout the cochlear duct. (e-e") Wnt7a mRNA was mostly detected in the cochlear floor, whereas Wht7b mRNA (f-f") was expressed throughout the cochlear duct. ($\mathrm{g}-\mathrm{g}$ ") A low level of Wht9a expression was noted throughout the cochlear duct. (h-h") Wnt11 expression was found in the roof of the cochlea, most notably in the basal turn. (i-j) DapB and Polr2a were used as negative and positive control probes, respectively. In addition, hematoxylin (blue) was used as counterstain. Arrowheads highlight mRNA signals, whereas brackets indicate the organ of Corti. Each experiment was repeated at least three times. Two-tailed Student's t-test. * $\mathrm{P}<0.05$. Data shown as mean \pm S.D.

Figure S12

Figure S12. Genetic ablation of Wht5a from the cochlear duct. (a-b) E18.5 whole cochlear mounts stained for Myosin7a (green, hair cells) and F-actin (red). In comparison to controls (Emx2 ${ }^{\text {Cre/f }} ;$ Wnt5a $\left.^{+ \text {/fl }}\right)$, Wnt5a cKO (Emx2 $\left.2^{\text {Cre/t } ; ~ W n t 5 a ~}{ }^{\text {f/fl/ }}\right)$ cochleae showed no gross disorganization of HCs or decrease in length. (c) No significant differences in length were observed between Wnt5a cKO and control cochleae. $\mathrm{n}=3$ per each genotype. (d-e) Both control and Wnt5a cKO tissues displayed three rows of OHCs and one row of IHCs. No misorientation of stereocilia bundles or mislocalization of Arl13b-labeled kinocilium was noted in the Wnt5a cKO cochleae. Student's t-test used, $n s=$ not significant. Data shown as mean \pm S.D.

Figure S13

Mid

Figure S13. Vangl2 genetically interacts with WIs to regulate PCP. (a) Schematic illustrating the asymmetric localization of Vang12 (green) at the lateral side of supporting cells. (b-c) Vangl2 was asymmetrically localized in both control (Emx2 ${ }^{\text {Cre/ } / ; ~ W i s ~}{ }^{+/ f l}$) and WIs cKO (Emx2 ${ }^{\text {Cre/f }}$; Wls ${ }^{f / f / \text { II }}$) cochleae. ZO-1 and PNA mark tight junctions and stereocilia bundles, respectively. All the images correspond to the middle turn of the cochlea. High magnification images showing Vangl2 expression in control (b' and b") and Wls cKO tissues (c' and c"). Dashed circles demark cell boundaries and white arrowheads highlight Vangl2 immunolocalization. (d-e) E18.5 cochleae were double stained for Pericentrin (red) and F-actin (green) to label basal bodies and stereocilia bundles in HCs, respectively. (d) In control (Emx2 ${ }^{\text {Cre/ }} ;$ Wls ${ }^{+f / l} ;$ Vang $/ 2^{2 p /+}$), bundle orientation and basal body positioning appeared normal for IHCs and OHCs. No extranumerary HCs were observed in control cochlea (d and d'). (e) In contrast, Wls
 stereocilia bundles and malpositioned basal bodies (arrows). In addition, extranumerary OHCs were observed in these tissues. In (d) and (e), arrows indicate stereocilia bundle orientations. ($\mathrm{d}^{\prime}-\mathrm{e}^{\prime}$) illustrate the orientation of stereocilia bundles from individual HCs in panels (d-e), respectively. (f-g) Rose and scatter plots depicting the distribution of stereocilia bundle orientation and basal body positioning, respectively. (f) In control, HCs displayed stereocilia bundles aligned in the mediolateral axis and tightly clustered basal bodies at the lateral pole. The third row of OHCs were consistently rotated minus 30 degrees along the mediolateral axis of the cochlea (towards the apex) and with their basal bodies clustered at that angle. In contrast, in WIs cKO; Vang/2 ${ }^{\text {Lp/t }}$ cochleae, HCs showed significantly more variable bundle orientation, particularly among the outermost row of OHCs (Permutation test of equality of variances, $\mathrm{p}<0.001$).

Moreover, basal body positioning in WIs cKO; VangI2 ${ }^{\text {Lp/+ }}$ cochleae was more scattered than in control, particularly in the most lateral outer hair cells. The OHC3+ group included cells from the OHC3 row plus more laterally located OHCs. In the scatter plots, concentric circles indicate relative distance from the center of the apical surface of HCs. $\mathrm{n}=$ number of hair cells analyzed from 3 control and WIs cKO; Vangl2 ${ }^{\text {Lp/+ }}$ cochleae. Zero degrees designate the mediolateral axis. Permutation test of equality of variances used. *** $p<0.001$. Circular mean and circular standard deviation shown in blue and red lines, respectively.

Figure S14. Vangl2 and WIs coordinate to regulate planar polarization. (a-d) Pericentrin (red) and F-actin (green) marked the basal body and stereocilia bundles, respectively, in cochleae from E18.5 control (Emx2 ${ }^{\text {Cre/ } / ;} ;$ Wls $^{+f / f} ;$ Vangl2 $2^{+/ f l}$) and WIs cKO; Vang $/ 2^{+/ f / l}\left(E m \times 2^{\text {Cre/t }} ;\right.$ Wls $^{\text {f/f/fl; }}$ Vang $/ 2^{+/ f / l}$) animals. Basal and middle turns shown. (a, c) In the control cochleae, stereocilia bundles were uniformly oriented along the mediolateral axis and basal bodies (arrowheads) were mainly located at the lateral pole of hair cells (HCs). There were also no extranumerary HCs. (b, d) In contrast, HCs in WIs cKO; Vang $/ 2^{+/ f 1}$ cochleae showed misoriented bundles along with basal body positioning defects, which were most severe in the outermost row of OHCs. Some OHCs were rotated almost 180 degrees with respect to the mediolateral axis. In addition, extranumerary IHCs and OHCs were observed in WIs cKO; Vang/2 $2^{+/ f l}$ cochleae. Insets (white boxes) in control and W/s cKO; Vang/2 ${ }^{+/ f l}$ tissues are shown in panels (a^{\prime}, c^{\prime}) and (b^{\prime}, d^{\prime}), respectively. Arrowheads mark the position of basal bodies. For panels (a-d), the orientation of each hair cell is illustrated in (a"-d"), respectively. Three control and WIs cKO; Vang $/ 2^{+/ f l}$ cochleae were analyzed.

Table S1. qPCR primer sequences

Gene Name	Forward primer (5 ' -> 3^{\prime})		Reverse primer (5^{\prime}-> 3^{\prime})

Table S2. Antibody list.

Protein	Antibody	Source	Dilution
WIs	EUR302	Kerafast	1:10000
WIs	17950-1-AP	Proteintech	1:500
Vangl2	21492-1-AP	Proteintech	1:250
Vangl1	HPA025235	Sigma-Aldrich	1:1000
Fzd6	AF1526	R and D Systems	1:250
Fzd3		gift from Jeremy Nathans	1:500
Celsr1		gift from Elaine Fuchs	1:3000
Dvl1	27384-1-AP	Proteintech	1:250
Dvi2	3224	Cell Signaling Technology	1:250
Dvi2	12037-1-AP	Proteintech	1:250
Dvi3	13444-1-AP	Proteintech	1:1000
Atoh1	21215-1-AP	Proteintech	1:1000
Myo7a	25-6790	Proteus Biosciences	1:1000
Sox2	sc-17320	Santa Cruz	1:200
ZO-1	33-9100	Thermo Scientific	1:1000
Arl13b	75-287	NeuroMab	1:500
Pericentrin	923701	BioLegend	1:1000
Acetylated α-tubulin	T7451	Sigma-Aldrich	1:500
RpGrip1L	55160-1-AP	Proteintech	1:500
Gnai3	11641-1-AP	Proteintech	1:250
Lgn		gift from Quansheng Du	1:1000
ParD6B	13996-1-AP	Proteintech	1:250

