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Supplementary	Figures	and	Tables	for	Economou	et	al.	" Perturbation	analysis	of	a	multi-
morphogen	Turing	Reaction-Diffusion	stripe	patterning	system	reveals	key	regulatory	
interactions"	
This document contains  

• Supplementary Figures S1-S16 (pages 1-10)
• Supplementary Tables 1 and 2 (page 11)
• Supplementary Notes 1-4 (pages 12-45)

Figure S1: Efficacy controls for inhibition of Wnt and 
BMP signalling In situ hybridisations on E13.5 palatal 
shelf explants for Wnt target gene Lef1 and BMP 
target gene Id1, cultured for 24 hrs in the small 
molecule inhibitor IWP-2 and dorsomorphin 
respectively. Contralateral shelves shown as vehicle 
controls. Well known domains of target gene 
expression in palatal region are lost upon inhibitor 
treatment; see loss of strong Lef1 expression in tooth 
upon IWP-2 treatment, and loss of strong Id1 staining 
at medial palate edge (see arrows). Darker regions in 
inhibitor treated specimens represent background 
staining in areas of thickened tissue.  Anterior to the 
right, medial up. Scalebar = 200 µm. 

Figure S2: Identifying rugae from Shh in situ hybridisation 
of whole mount explant cultures 
a) Shh in situ hybridisations on E13.5 palatal shelf explants
cultured for 24 hrs. Red rectangle shows 150 µm band 
along which Shh staining intensity was measured. Anterior 
to right, medial up. Scalebar = 200 µm. 
b) Plot of mean Shh staining intensity for each AP position
along the red rectangle in a), against the AP position 
relative to the posterior of the image. Blue dots and coarse 
dashed lines denote positions of ruga 8 and ruga 1, 
identified manually on specimen in a). Green and red dots 
denote half heights and one third heights respectively for 
each peak, as illustrated by fine dashed lines on anterior 
of ruga 2. Arrows denote the next position in the array 
with the same intensity as marked by the red dots, with 
red arrows identifying potentially fused rugae. 
c) Plot of mean Shh staining intensity as in b) with blue
bars denoting the positions of the rugae, with anterior and 
posterior boundaries determined by the blue dashed 
lines. Black dashed lines denote position of rugae, taken 
as the manually identified positions for ruga 8 and ruga 1, 
and the ruga midpoints for the remaining rugae. 
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Figure S3: Effects of pathway inhibition on the pattern of the rugae 
a) Mean number of rugae as marked by clear peaks of Shh expression in E13.5 palatal shelves cultured for 24 hrs with
the specified inhibitor (+) or vehicle (-). 
b-d) Plots of Shh stripe position b), width c) and stripe intensity d) for all ruga from explants for specified inhibitor 
treatment, plotted against values for the equivalent ruga in stage matched untreated (vehicle) control (see Methods for 
details of quantifications). Plots from paired untreated explants are also shown to show levels of variability in the 
absence of inhibitor. Solid grey lines denote equal values, dashed lines represent one median displacement around the 
line of equal values for untreated explants (see Methods for details). Magenta regions represent larger, and cyan regions 
smaller, values in inhibitor treated explants. For stripe position b), red points relate to rugae determined to have fused 
with another ruga in the inhibitor treated explants, with their position in plotted against the position of that ruga in the 
inhibitor treated explant. Yellow and green points relate to rugae in the inhibitor treated and untreated explants 
respectively, where the equivalent ruga could not be identified in the stage matched explant (respectively the untreated 
or inhibitor treated). For measures of stripe width c) and intensity d) points in red denote posterior rugae (see Methods). 
e) Percentage of rugae for each treatment lying within one median displacement from the line of equal values (grey),
or above (magenta) and below (cyan), for each of the three measures in b-d). 
All plots depict quantifications from four pairs of explants. Drug treatments were carried out at the doses specified in 
the Methods, plus an additional dose, with points pertaining to lower doses shown as circles and higher dose as triangles 
in all plots. Doses used are: cyclopamine 20 µM and 80 µM, SU-5402 40 µM and 80 µM, IWP-2 10 µM and 50 µM, 
dorsomorphin 10 µM and 50 µM.  
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Figure S4: Titration of FGF inhibitor SU-5402 
a) Shh expression in palatal shelves explanted at E13.5 and cultured with the FGF receptor inhibitor SU-5402 for 24 hrs
at the indicated doses, alongside the contralateral shelves which were cultured in DMSO. 
Scalebar = 200 µm. 
b) Plot showing positive correlation between concentration of SU-5402 and Shh stripe width.
c) Plot showing positive correlation between concentration of SU-5402 and Shh stripe greyscale intensity. Note that as
more intense staining has a lower greyscale value, greyscale axis is plotted in reverse to show a decrease in staining 
intensity with increased concentration of inhibitor. 
Points in b) and c) depict ruga 4 to 2 from two embryos per concentration. Other rugae are not plotted as measurements 
were not calculated for ruga 1 (see methods), while more posterior rugae appear very variable even in control 
treatments (see Results). Pearson’s product-moment correlation coefficient (r) is given for each plot in b) and c). 

Figure S5: Quantification of striped rugal expression 
a) In situ hybridisation showing Shh expression in sagittal sections taken at 35 µm increments across a E13.5 palatal
shelf, ordered from medial most (red outline) to lateral most (cyan outline). The positions of ruga 3 and ruga 8 are 
indicated. Dotted lines illustrate the extent of the palatal epithelium used for quantifications. Anterior to right. 
Scalebar = 200 µm. 
b) Intensity profiles for each section aligned by the position of ruga 3. Peaks in Shh intensity at ruga 3 and ruga 8 are
indicated. Profiles coloured as in a). 
c) Mean intensity profile from the four sections in a) and b). Shaded area represents 1 +/-sd.
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Figure S6: Additional pathway marker 
quantification 
In situ hybridisation of sagittal section 
through E13.5 palatal shelf for additional 
markers of pathway activity. Dotted lines 
illustrate the extent of the palatal epithelium 
and the underlying mesenchyme used for 
quantifications. Anterior to right. The 
intensity profile averaged across the palatal 
shelf shown for each specimen from which 
illustrated in situ is taken for gene of interest 
(coloured trace) and Shh (grey trace) for the 
epithelium and mesenchyme. Shaded areas 
represent 1 sd around gene of interest (for 
clarity of presentation, variation around Shh 
trace is not shown). For each marker, the 
number of specimens showing the observed 
pattern are: Ptc1 41, Erm 38, Spry2 36 and 
Axin2 43.  Scalebars = 200 µm. 

Figure S7: Adding a component as a mediator of an interaction 
a) Network topology comprising three components U, V and W. This topology can be interpreted as a two-component
activator-inhibitor system between ‘master morphogens’ U and V, where the positive interaction from U to V is 
‘mediated’ by a double inhibition (ie a positive interaction) through W (see green arrow in U-V AI system). Alternatively, 
this same three-component topology can be interpreted in a similar manner as a substrate -depletion system with 
‘master morphogens’ U and W, where V ‘mediates’ the positive interaction from W to U (see red arrow in U-W SD 
system). 
b) All possible ways that an interaction in a two-component Wnt-Hh AI network (marked in green) can be ‘mediated’ by
BMP in the adjacent three-component Wnt-BMP-Hh RD networks. Interaction in the three-component RD networks 
maintain the net sign of the marker interactions in the two-component networks; the phase of BMP relative to Wnt and 
Hh is not considered. 
c) Same as in b) for Wnt mediating interaction in a two-component BMP-Hh SD network (with interactions ‘mediated’
by Wnt in blue). 
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Figure S9: Inhibition of production produces the same outcomes as inhibition of response 
Violin plots showing percentage change in the mean level of components U and V in illustrated activator-inhibitor (AI) 
and substrate-depletion (SD) RD networks, on inhibition of the production of component U and V in RD simulations. 
 
 

 
Figure S10: Three-component topologies and exclusion by successive constraints 
a) Three-component network topology showing the nine possible interactions captured in the reaction matrix. 
b) Enumeration of topologies recovered from parameter search under different constraints as detailed in text. 
 
 
 

 
Figure S11: Responses of three-component networks to perturbation 
Full heat map showing the percentage of parameter sets where the level of each component increases in response to 
the inhibition of each component in the network in RD simulations. Topology names are as in figure 3. Hierarchical 
clustering shows that the behaviours of the topologies fall into the main categories for which all three components 
show similar behaviour. 
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Figure S12: Feedback loops in three-component networks 
a) Schematics showing the eight minimal 4-interaction RD networks recovered from the parameter search, with either 
the single positive feedback loop marked in magenta (left) or the single negative feedback loop marked in cyan (right). 
Topologies are group as according the the hierarchical clustering in figure S7. 
b) Schematics showing the ten minimal 5-interaction topologies networks recovered from the parameter search. On 
left, the net feedback between Wnt and BMP is marked, with magenta for a positive feedback, or cyan for a negative 
feedback. (It should be noted that for some topologies (such as iv, vii, iii and ix) the feedback is indirect with both the 
interaction from Wnt to BMP and BMP to Wnt pass through Hh. For example, in iv, while there is no single positive 
feedback loop, the net interaction between Wnt and BMP is a mutual inhibition and therefore a net positive feedback.) 
On the right, the presence of a negative feedback between Hh and the autoactivating component (Wnt or BMP) is 
marked in cyan. Topologies are group as according the the hierarchical clustering in figure S7. 
Wnt in blue, BMP in green and Hh in red. 
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Figure S13: Using topology to constrain the response to perturbation of minimal three-component networks 
a) Illustrative examples of minimal 4-interaction three-component RD networks showing the three different ways a 
single positive and negative feedback loop can be combined. The positive feedback loop can pass through one (topology 
3) or two (topologies 1 and 2) components, and the negative feedback can pass through two (topology 1) or three 
(topologies 2 and 3) components. Positive feedback loops in magenta, negative feedback loops in cyan. 
b) Illustrative examples of 5-interaction three-component RD networks showing the five different ways that an external 
component can be wired into a two-component RD core, such that the new topology is not an elaboration of one of the 
minimal architectures in a). Core components and interactions in black, with external in grey. The nature of the net 
feedback between the external component (BMP in the illustrative examples) and the core positive feedback 
component (Wnt in the illustrative examples) is shown as a magenta loop for positive feedback and a cyan loop for 
negative feedback. 
c) Examples of three-component RD networks showing the six different orientations that a set of 3-component RD loops 
can take, using the 4-interaction minimal architecture in a) 1 as an illustrative example. The feedback loops can be 
rotated into three different orientations (1, 3 and 5), as shown by the positions of the two feedback loops relative to 
the dashed black line. In each orientation, the architectures can be reflected around the dashed black line to give a 
further three orientations (2,4 and 6). 
d) Response of Hh to inhibition of Wnt, BMP and Hh for all 45 possible minimal three-component Wnt-BMP-Hh 
topologies based on reaction term analysis. Topologies are specified by the combination of a topology (1 to 8 from a) 
and b)) and an orientation (1 to 6 from c)). Topology architecture 8 is symmetrical upon reflection and therefore two 
the topology under two possible orientations is the same. The direction of response of Hh shown by arrowhead, with 
up arrow indicating increase and down arrow decrease. Where the response is unconstrained a white bar is shown. 
Coupling between components (see supplementary note 4 and figure 4) is not shown. The ten topologies for which the 
predicted responses are consistent with experimental observations are marked in red. These are the same topologies 
as recovered by the RD analysis (see figure 3). 
 
 
 
 
 

Development: doi:10.1242/dev.190553: Supplementary information

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n



 9 

Figure S14: Calibration curves for 
converting palatal length into time 
a) Plot of time litters of mice were 
collected vs. the mean embryo mass for 
that time (n = 3 litters per time point).  
b) Plot of embryonic mass (taken as the 
midpoint of the bin) against average ruga 
3 to ruga 8 length the the weight bin. 
For a) and b), equations of best fit 
quadratics are given which allowing the 
conversion of palatal lengths to time in 
embryonic days. 

 

Figure S15: Illustrative example of how the appearance of periodic target gene expression relative to the onset of 
rugal Shh expression is identified 
a) Kymographs of epithelial Shh (green) and epithelial Id1 (magenta) as in figure 6a. 
b) Plots of normalised staining intensity for Shh (green) and Id1 (magenta) against time in embryonic days at four 
different distances from ruga 8 (i-iv), as marked by arrows and white dashed lines in a). 
c) Plots of normalised staining intensity for Shh against Id1 for 600 equal time steps from 12.5 to 14.0 embryonic days 
at four different distances from ruga 8 (i-iv), as in b). The Spearman rank correlation coefficient (r) is given for each 
distance. 
d) Plot of Spearman rank correlation coefficient (r) against distance from ruga 8 for Id1. Shaded area represents 95 % 
confidence interval from bootstrapping (see Methods). Solid line represents mean correlation coefficient calculate over 
anterior third of palatal tissue. Dashed lines demonstrate how the position relative to ruga 8 where half this value is 
reached is used to determine the onset of out-of-phase Id1 expression, marked by orange dashed lines in a). 
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Figure S16: Kymographs showing patterns of mesenchymal expression through time for Gli1 and Id1  
Kymographs showing the pattern of expression of mesenchymal Gli1 and Id1 through time (magenta) and their 
expression relative to Shh (green) for rugae 3, 4 and 5. White arrowheads indicate the approximate onset of Shh 
expression for each ruga, and orange arrowheads indicate approximate positions of the change in the expression 
pattern of each target gene associated with each ruga.  
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Supplementary Tables: 
 

Topology Steady state 
(%) 

Maintain wave 
number (%) 

Shift in wave position (%) 
Inhibit U Inhibit V 

U V U V 
AI (R) 95.2 100.0 99.8 100.0 100.0 100.0 

SD (R) 89.6 100.0 99.6 100.0 99.9 100.0 

AI (P) 95.2 100.0 99.9 100.0 99.4 100.0 

SD (P) 89.5 100.0 99.8 100.0 100.0 100.0 
 

Table S1:  Behaviour of simulations for two-component RD topologies. 
Table showing for each topology what percentage of 1000 randomly generated parameter sets consistent with the 
criteria for DDI reached a steady state after 1000 time steps, and what percentage of these maintained their wave 
number after inhibition (there is no change or loss of periodicity). For parameter sets maintaining wave number, the 
proportion of waves showing a shift in position (either upwards or downwards – see Methods) is given for both 
components of the inhibition of each component. For the two two-component network topologies activator-inhibitor 
(AI) and substrate-depletion (SD) both the inhibition of the response to each component (R) and the inhibition of their 
production (P) were considered. 

 
 
 

 

Topology Steady 
state (%) 

Maintain 
wave 

number (%) 

Shift in wave position (%) 
Inhibit W Inhibit B Inhibit H 

W B H W B H W B H 
4-i 85.5 99.8 99.6 99.8 100.0 99.8 100.0 99.9 100.0 100.0 100.0 

4-ii 93.2 99.7 99.9 100.0 100.0 99.9 100.0 100.0 99.9 100.0 99.9 

4-iii 80.1 99.1 99.7 99.9 99.9 100.0 99.7 100.0 94.0 99.5 99.9 

4-iv 89.5 98.0 99.9 99.9 100.0 99.8 99.5 100.0 90.5 99.7 100.0 

4-v 92.5 99.9 100.0 85.9 100.0 100.0 82.9 100.0 98.6 95.4 99.8 

4-vi 83.9 99.9 99.8 85.9 100.0 99.8 86.6 100.0 98.0 94.9 99.9 

4-vii 82.6 100.0 99.4 99.9 100.0 100.0 99.8 100.0 100.0 100.0 100.0 

4-viii 82.6 100.0 94.9 99.9 100.0 99.5 99.8 100.0 99.3 99.9 100.0 

5-i 92.7 99.9 100.0 100.0 100.0 99.6 99.8 100.0 99.9 100.0 99.9 

5-ii 90.5 99.9 99.7 100.0 100.0 99.7 99.9 100.0 99.8 99.8 99.9 

5-iii 94.3 100.0 99.8 100.0 100.0 99.8 100.0 100.0 99.7 100.0 100.0 

5-iv 92.7 100.0 100.0 100.0 100.0 99.7 99.4 99.4 99.7 99.9 100.0 

5-v 94.6 100.0 99.8 99.9 100.0 99.6 99.8 99.0 99.5 99.8 100.0 

5-vi 86.4 99.9 100.0 99.3 99.0 99.4 99.7 100.0 93.6 99.5 99.9 

5-vii 73.1 99.9 100.0 99.6 100.0 100.0 99.6 100.0 99.7 99.7 99.7 

5-viii 92.0 100.0 98.7 99.5 99.9 99.6 99.5 99.8 97.3 99.6 99.7 

5-ix 80.6 100.0 100.0 99.0 99.9 100.0 99.8 100.0 99.8 99.6 100.0 

5-x 87.0 99.7 99.5 99.0 99.4 99.7 99.6 100.0 99.7 99.7 100.0 

	
Table S2:  Behaviour of simulations for three-component RD topologies. 
Table showing for each topology (as defined in figure 3b) the behavior of RD simulation of the three components Wnt 
(W), BMP (B) and Hh (H), as detailed in supplementary table S1. As stated in Methods, for Wnt inhibition is at the level 
of production, while for BMP and Hh inhibition is at the level of response. 
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Appendix S1. Supplementary Notes for Economou et al. " Perturbation analysis of a 

multi-morphogen Turing Reaction-Diffusion stripe patterning system reveals key 

regulatory interactions"	

1:	Review	of	Conditions	for	DDI	in	2-	3-	and	N-component	systems	

The	 conditions	 for	 a	 diffusion	 driven	 instability	 (DDI)	 have	 been	 extensively	 analysed.	 For	

completeness,	we	present	general	conditions	for	a	DDI,	as	well	as	specific	criteria	for	assessing	

whether	specific	parameterisations	of	two-	and	three-component	RD	systems	will	give	a	DDI.	

1.1:	General	conditions	for	a	DDI	

We	considered	a	general	reaction-diffusion	system	of	the	form	

𝜕𝒖
𝜕𝑡 = 𝒇(𝒖) + 𝑫∇!𝒖,	

where	u	is	a	vector	of	N	reactant	concentrations	and	D	is	a	diagonal	N×N	matrix	of	diffusion	

coefficients	where	𝑁 ≥ 2,	such	that	

𝒖 = /

𝑢"
𝑢!
⋮
𝑢#

2		and		𝑫 = /

𝐷" 0 ⋯ 0
0 𝐷! ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝐷#

2.	

Following	 the	 well-established	 linear	 stability	 approach	 to	 deriving	 conditions	 for	 DDI,	 as	

outlined	Murray	(2003)	(see	also	White	and	Gilligan	1998,	Marcon	et	al.	2016)	(N.B.	References	

below),	we	derive	the	stability	matrix	S,	for	which	

𝑺 = 𝑱 − 𝑫𝑞!,	

where	q	is	the	wave	number	of	a	spatially-periodic	perturbation,	and	J	is	the	Jacobian	matrix	of	

the	reaction	system,	where	the	elements	Jij		are	the	first	partial	derivatives	of	the	components	

of	f,	evaluated	at	a	spatially-uniform	steady	state,	such	that

𝑱 = /

𝐽"" 𝐽"! ⋯ 𝐽"#
𝐽!" 𝐽!! ⋯ 𝐽!#
⋮ ⋮ ⋱ ⋮
𝐽#" 𝐽#! ⋯ 𝐽##

2	,			𝐽$% =
&'!()",)#,…,)$)

&)%
.	
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Solving	the	system	

	

det	[𝜆𝑰 − 𝑺] = 0	

	

gives	the	dispersion	relation	for	the	eigenvalues	𝜆	of	S:	

	

𝜆# + 𝑎"(𝑞!)𝜆#-" + 𝑎!(𝑞!)𝜆#-! +⋯+ 𝑎#(𝑞!) = 0.	 	

	

For	diffusion	driven	instability,	the	system	must	be	stable	without	diffusion	and	unstable	with	

diffusion.	Thus,	when	q=0,	all	solutions	𝜆	of	the	dispersion	relation	must	have	negative	real	part,	

and	there	must	exist	positive	values	of	q2	for	which	there	is	at	least	one	solution	𝜆	with	positive	

real	part.	

	

We	will	now	consider	the	specific	cases	of	two-	and	three-component	RD	systems.	

	

	

1.2:	Two-component	system	

	

For	a	two-component	system	of	the	form	above,	the	dispersion	relationship	takes	the	form	

	

𝜆! + 𝑎"(𝑞!)𝜆 + 𝑎!(𝑞!) = 0,	 	

	

with	coefficients	

	

𝑎"(𝑞!) = −(𝐽"" + 𝐽!!)+𝑞!(𝐷" + 𝐷!),	

	

𝑎!(𝑞!) = (𝐽""𝐽!! − 𝐽"!𝐽!") − 𝑞!(𝐽""𝐷! + 𝐽!!𝐷").	

	

Following	the	approach	of	Murray	(2003)	gives	the	conditions	for	a	DDI.	Stability	in	the	absence	

of	diffusion	requires		

	

𝐽"" + 𝐽!! < 0,	
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and		

𝐽""𝐽!! − 𝐽"!𝐽!" > 0,	

	

and	instability	with	diffusion	requires	

	

𝐽""𝐷! + 𝐽!!𝐷" > 2R𝐷"𝐷!(𝐽""𝐽!! − 𝐽"!𝐽!") > 0.	

	

As	 is	well	established	(see	Murray	2003),	 if	 J11>0	and	 J22<0,	 the	 two	components	will	be	 in-

phase	when	J12<0	and	J21>0,	and	out-of-phase	when	J12>0	and	J21<0.	

	

1.3:	Three-component	system	

For	a	three-component	system	of	the	form	above,	the	dispersal	relationship	takes	the	form	

	

𝜆. + 𝑎"(𝑞!)𝜆! + 𝑎!(𝑞!)𝜆 + 𝑎.(𝑞!) = 0,	 	

	

with	coefficients	

	

𝑎"(𝑞!) = −(𝐽"" + 𝐽!! + 𝐽..)+𝑞!(𝐷" + 𝐷! + 𝐷.),	

	

𝑎!(𝑞!) = (𝐽""𝐽!! − 𝐽"!𝐽!" + 𝐽""𝐽.. − 𝐽".𝐽." + 𝐽!!𝐽.. − 𝐽!.𝐽.!) − 𝑞!(𝐽"𝐷! + 𝐽"𝐷. + 𝐽!𝐷" + 𝐽!𝐷.
+ 𝐽.𝐷" + 𝐽.𝐷!)	+𝑞/(𝐷"𝐷! + 𝐷"𝐷. + 𝐷!𝐷.),	

	

𝑎.(𝑞!) = −(𝐽""𝐽!!𝐽.. + 𝐽"!𝐽!.𝐽." + 𝐽".𝐽.!𝐽!" − 𝐽""𝐽!.𝐽.! − 𝐽!!𝐽".𝐽." − 𝐽..𝐽"!𝐽!") + 𝑞!((𝐽""𝐽!!
− 𝐽"!𝐽!")𝐷. + (𝐽""𝐽.. − 𝐽".𝐽.")𝐷! + (𝐽!!𝐽.. − 𝐽!.𝐽.!)𝐷")	−𝑞/(𝐽""𝐷!𝐷. + 𝐽!!𝐷"𝐷.
+ 𝐽..𝐷"𝐷!)+𝑞0𝐷"𝐷!𝐷..	

	

Following	 the	 approach	 of	 White	 and	 Gilligan	 (1998),	 we	 considered	 the	 Routh-Hurwitz	

criteria.	Stability	without	diffusion	requires	

	

𝑎"(0) > 0		⋀		𝑎.(0) > 0		⋀		𝑎"(0)𝑎!(0) − 𝑎.(0) > 0		

	

and	instability	with	diffusion	requires	

	

𝑎"(𝑞!) < 0		⋁		𝑎.(𝑞!) < 0		⋁		𝑎"(𝑞!)𝑎!(𝑞!) − 𝑎.(𝑞!) < 0.		
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As	detailed	by	White	and	Gilligan	(1998),	the	conditions	for	instability	can	only	be	satisfied	if	

	

		𝑎.(𝑞!) < 0	 	

	

or		

	

𝑎"(𝑞!)𝑎!(𝑞!) − 𝑎.(𝑞!) < 0.	

	

Both	of	the	functions	in	the	inequalities	are	cubic	functions	of	the	form			

	

𝑦(𝑞!) = 𝑎(𝑞!). + 𝑏(𝑞!)! + 𝑐(𝑞!) + 𝑑,		

	

where	a,	b,	c	and	d	are	constant	coefficients.	A	DDI	will	occur	if	there	exists	a	minimum	turning	

point	𝑞12! ,	for	which	𝑞12! > 0,	and	𝑦(𝑞12! ) < 0	(see	White	and	Gilligan	(1998)	for	details).	

	

RD	systems	with	more	than	two	components	can	destabilise	either	as	monotonically	growing	

spatially	periodic	patterns	(as	for	two	component	systems)	or	temporally	oscillating	patterns.	

When	the	system	is	destabilized	with	real	positive	l,	the	spatial	patterns	grow	monotonically,	

while	 if	l 	 has	 non-zero	 imaginary	 parts,	 they	will	 oscillate	 temporally.	White	 and	 Gilligan	

(1998)	 provide	 a	 detailed	 analysis	 of	 conditions	 for	monotonically	 growing	 and	 oscillating	

patterns.	 From	 their	 analysis,	 a	 parameterization	 will	 be	 produce	 monotonically	 growing	

spatial	patterns	for	all	q2	if		

	

𝑎.(𝑞!) < 0,		

	

	𝑎"(𝑞!)𝑎!(𝑞!) − 𝑎.(𝑞!) > 0,	

	

and	

	

𝑎"(𝑞!)! − 𝑎!(𝑞!) > 0.	

	

The	 function	 in	 the	 final	 condition	 is	 quadratic	 in	 q2,	 with	 a	 minimum	 at	 𝑞34#! ,	 such	 that	

𝑎"(𝑞34#! )! − 𝑎!(𝑞34#! ) > 0.	
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For	each	parameterization,	a	phase	relationship	was	calculated	as	the	eigenvector	of	the	largest	

positive	eigenvalue	of	the	matrix	

	

	

𝑺 = Y
𝐽"" − 𝐷"𝑞! 𝐽"! 𝐽".

𝐽!" 𝐽!! − 𝐷!𝑞! 𝐽!.
𝐽." 𝐽.! 𝐽.. − 𝐷.𝑞!

Z,	

	

calculated	at	the	turning	point	𝑞12! 	for	which	𝑎.(𝑞!) < 0.	While	this	is	not	necessarily	the	phase	

pattern	with	which	the	pattern	with	the	fastest	growing	wavelength	will	grow,	it	does	give	a	

phase	pattern	that	is	consistent	with	the	network	topology	defined	by	the	reaction	matrix.		

	

	

1.4:	N-component	system	

For	a	general	reaction	diffusion	system,	Marcon	et	al.	(2016)	demonstrated	that	coefficients	of	

the	dispersion	relationship,	𝑎5(𝑞!)	for	k	=1,…,N,	are	of	the	form	

	

𝑎5(𝑞!) = [ \(−1)5det[𝑱(𝛾5)]
6&⊆8&

$

+ [ 𝑞!(5-9)
5-"

9:"

[ (−1)9det[𝑱(𝛾9)]det[𝑫(𝛾_9)] + 𝑞!5det[𝑫(𝛾5)]
6'⊂6&

`,			(1.1)	

	

where	𝛾5 	denotes	a	sequence	of	k	distinct	integers	{𝑖", … , 𝑖5},	where	1 ≤ 𝑖" < 𝑖! < ⋯ < 𝑖5 ≤ 𝑁	

and	𝑆5#	 is	the	set	of	all	possible	sequences	of	k	elements	in	{1, … , 𝑁},	𝑱(𝛾5)	denotes	the	k	×	k	

submatrix	 made	 up	 of	 coefficients	 with	 the	 column	 and	 row	 indices	 𝛾5 ,	 and	 𝛾9	 denotes	 a	

sequence	of	𝑚 < 𝑘	distinct	integers,	where	𝛾9 ⊂ 𝛾5 ,	and	𝛾_9	 is	a	complementary	sequence	of	

integers	such	that	𝛾9 ∩ 𝛾_9 = 0	and	𝛾9 ∪ 𝛾_9 = 𝛾5 .	As	outlined	in	Marcon	et	al.	(2016),	there	will	

be	 a	 single	 real	 and	 positive	 eigenvalue	 (and	monotonically	 growing	 patterns	will	 grow)	 if	

𝑎5(𝑞!) > 0	for	𝑘 < 𝑁,	and	𝑎#(𝑞!) < 0.	
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2:	Perturbation	predictions	from	RD	reaction	terms	

	

Our	 analysis	 of	 the	 response	 of	 RD	 systems	 to	 perturbations	 suggested	 that	 there	 is	 a	

relationship	between	the	feedback	loops	within	the	RD	system,	and	the	nature	of	the	response	

of	 the	 system	 to	perturbation.	 Specifically,	whether	 a	 component	 increases	or	decreases	 its	

level	in	response	to	the	inhibition	of	another	component	depends	on	whether	the	components	

are	in	a	positive	or	negative	feedback	loop.	As	the	feedback	loops	are	encoded	by	the	reaction	

terms	of	the	system,	we	considered	what	role	the	reaction	terms	could	play	in	this	behaviour.	

Preliminary	simulations	suggested	that	the	response	of	an	established	spatially	periodic	steady	

state	solution	of	an	RD	system	to	perturbation	is	predicted	by	the	response	of	the	reaction	term	

equilibrium,	and	whether	it	increases	or	decreases	in	response	to	equivalent	perturbations.	We	

therefore	decided	to	investigate	further	the	factors	that	govern	the	responses	of	the	reaction	

terms.	

	

2.1:	Shape	of	N-component	response	

	

We	 considered	 the	 response	 of	 a	 system	 of	N	 components,	 using	 a	 system	 of	 linear	 ODEs	

equivalent	to	that	used	for	the	full	reaction-diffusion	system	we	used	before,	where	

	

𝑑𝑢$
𝑑𝑡 =[𝑎$%𝑢% + 𝑏$

#

%:"

− 𝑐$𝑢$ .	

	

The	parameters	aij	represent	the	weight	of	the	interaction	from	component	uj	to	component	ui,	

where	 a	 positive	 term	 indicates	 an	 activation	 and	 a	 negative	 term	 an	 inhibition,	 𝑏$ 	 is	 a	

background	production	term	and	ci	is	the	linear	degradation	rate	of	component	ui.		

	

The	position	of	 the	equilibrium	is	given	by	setting	<)!
<=
= 0	 for	all	 i,	and	as	 in	(Desoer	1960),	

rearranging	this	gives			

	

𝑢$ = (𝑨	-"𝒃)$ = −
∑ C[𝑨]%$𝑏%#
%:"

det	[𝑨] ,	

	

where	the	matrix	A	is	given	by	

	

Development: doi:10.1242/dev.190553: Supplementary information

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n



 18 

𝑨 = /

𝑎"" − 𝑐" 𝑎"! ⋯ 𝑎"#
𝑎!" 𝑎!! − 𝑐! ⋯ 𝑎!#
⋮ ⋮ ⋱ ⋮
𝑎#" 𝑎#! ⋯ 𝑎## − 𝑐#

2,		

	

and	C[𝑨]%$ 	is	the	cofactor	of	the	element	of	the	jth	row	and	ith	column	of	A.	

	

We	considered	the	effect	of	 inhibiting	a	component	on	 the	equilibrium	levels	of	 the	system.	

Specifically,	we	looked	at	the	effect	of	inhibiting	component	u1	on	both	the	levels	of	u1	itself,	and	

the	 levels	 of	 other	 components	 by	 looking	 at	 the	 effect	 on	 a	 component	 u2.	 As	 for	 our	

simulations	of	 full	RD	systems	we	performed	two	 forms	of	 inhibition,	namely	 inhibiting	 the	

response	 of	 a	 component	 to	 the	 levels	 of	 u1	 (analogous	 to	 inhibiting	 a	 “u1	 receptor”)	 and	

inhibiting	the	production	of	u1.	

	

2.1.1:	Inhibition	of	response	to	u1	

	

We	first	consider	the	effect	of	perturbing	the	response	to	u1	by	multiplying	the	weight	of	all	

interactions	from	component	u1	(to	itself	and	all	other	components)	by	a	factor	of	1 − 𝛼	(i.e.	

with	no	inhibition	when	𝛼 = 0	and	complete	inhibition	when	𝛼 = 1).	At	equilibrium,	this	gave	

a	system	of	the	form	

	

𝑑𝑢"
𝑑𝑡 = 0 = (1 − 𝛼)𝑎""𝑢" +[𝑎"%𝑢% + 𝑏"

#

%:!

− 𝑐"𝑢"	

and	

𝑑𝑢$
𝑑𝑡 = 0 = (1 − 𝛼)𝑎$"𝑢$ +[𝑎$%𝑢% + 𝑏$

#

%:!

− 𝑐$𝑢$ , 𝑖 = 2,… ,𝑁.	

	

	

It	should	be	noted	that	 for	the	response	of	u1	 to	 its	own	inhibition,	only	the	weight	of	a11	 is	

reduced,	as	c1	represents	a	linear	degradation	term	and	would	therefore	be	unaffected	directly	

by	an	inhibitor	blocking	a	receptor.			

	

Rearranging	these	equations	gave	equilibrium	levels	of	ui	upon	inhibition	of	strength	a,	where	
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𝑢" = −
∑ C[𝑨]%"𝑏%#
%:"

det[𝑨] − 𝛼 det[𝑪]					(2.1)	

	

and	

	

𝑢$ = −
∑ C[𝑨]%$𝑏%#
%:" − 𝛼∑ C[𝑪]%$𝑏%#

%:"

det[𝑨] − 𝛼 det[𝑪] 					(2.2)	

	

for	i=2,…,N.	Matrix	C,	which	does	not	include	the	degradation	term	c1,	is	given	by	

	

𝑪 = /

𝑎"" 𝑎"! ⋯ 𝑎"#
𝑎!" 𝑎!! − 𝑐! ⋯ 𝑎!#
⋮ ⋮ ⋱ ⋮
𝑎#" 𝑎#! ⋯ 𝑎## − 𝑐#

2,		

	

and		C[𝑪]%$ 	is	the	cofactor	of	the	element	of	the	jth	row	and	ith	column	of	C.	

	

Response	of	u1:	

	

The	response	of	u1	to	its	own	inhibition	is	governed	by	Equation	(2.1),	which	is	a	function	of	a	

with	horizontal	and	vertical	asymptotes	at		

	

u1	= 0 

	

and		

	

𝛼 =
det	[𝑨]
det	[𝑪],

 	

respectively.	The	intercept	of	the	u1-axis	lies	at		

	

𝑢" = −
∑ C[𝑪]%"𝑏%#
%:"

det	[𝑨] ,	
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which	 is	 the	 unperturbed	 level	 of	u1	 (i.e.	when	a = 0). As	 the	 unperturbed	 level	 of	u1	 has	 a	

positive	value,	the	function	in	Equation	(2.1)	can	take	two	forms,	depending	on	whether	the	

vertical	asymptote	corresponds	to	a	positive	or	negative	value	of	a	(see	Figure	SN1	a).		

																																

	

Therefore,	u1	will	increase	with	its	own	inhibition	if	

	
det	[𝑨]
det	[𝑪] > 0					(2.3)

 	

	

and	will	decrease	if	

	
det	[𝑨]
det	[𝑪] < 0.					(2.4)

 	

Figure SN1 
a) Graphs showing the two possible responses of 
u1 to the inhibition of u1 by strength a. The vertical 
asymptote (dashed line) can lie at a positive (i) or 
negative (ii) value of a. The horizontal asymptote 
lies along the a-axis. 

b) Graphs showing the six possible responses of u2 
to the inhibition of u1 by strength a. The vertical 
asymptote (vertical dashed line) can lie at a 
positive (i, ii and vi) or negative (iii, iv and v) value 
of a. The horizontal asymptote (horizontal dashed 
line) can lie at a positive (ii, iii, v and vi) or negative 
(i and iv) value of u2. The intercept of the a-axis 
can lie at a positive (ii, iv and vi) or negative (i, iii 
and v) value of a. 
c) Graphs showing the three possible responses of 
u1to the inhibition of u1 by strength a. The vertical 
asymptote (vertical dashed line) can lie at a 
positive (ii and iii) or negative (i) value of a. The 
horizontal asymptote (horizontal dashed line) can 
lie at a positive (ii and iii) or negative (i) value of 
u1. The intercept of the a-axis can lies at a=1. 
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Response	of	u2:	

	

The	response	of	u2	to	inhibition	of	u1	is	governed	by	Equation	(2.2),	which	is	also	a	function	of	

a	with	horizontal	and	vertical	asymptotes,	which	lie	at	

	

𝑢! = −
∑ C[𝑪]%!𝑏%#
%:"

det	[𝑪] 	

	

and		

	

𝛼 =
det	[𝑨]
det	[𝑪],

  

respectively.	The	intercept	of	the	u2-axis	lies	at	

	

𝑢! = −
∑ C[𝑨]%!𝑏%#
%:"

det	[𝑨] ,	

 

which	is	the	unperturbed	state	(when	a = 0)	and	has	a	positive	value,	while	the	intercept	of	the	

a-axis	is	at		

	

𝛼 =
∑ C[𝑨]%$𝑏%#
%:"

∑ C[𝑪]%$𝑏%#
%:"

.

 	

Depending	on	the	relative	values	of	the	asymptotes	and	intercepts,	this	function	can	take	six	

forms	(Figure	SN1	b),	for	three	of	which	(Figure	SN1	b	i–iii),	u2	increases	with	inhibition	of	u1.	

For	the	remaining	three	(Figure	SN1	b	iv–vi),	u2	decreases	with	the	inhibition	of	u1.	From	the	

positions	of	the	horizontal	asymptote	relative	to	the	unperturbed	state	at	𝛼 = 0,	for	conditions	

i,	ii,	iv	and	v	

	

−
∑ C[𝑨]%!𝑏%#
%:"

det	[𝑨] > −
∑ C[𝑪]%!𝑏%#
%:"

det	[𝑪] ,	

	

while	for	conditions	iii	and	vi	
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−
∑ C[𝑨]%!𝑏%#
%:"

det[𝑨] < −
∑ C[𝑪]%!𝑏%#
%:"

det	[𝑪] .	

	

However,	from	the	position	of	the	vertical	asymptote,	for	i,	ii	and	vi	

	

det[𝑨]
det[𝑪] > 0,

 
	

while	for	iii,	iv	and	v	

	

det[𝑨]
det[𝑪] < 0.

 
	

Therefore,	in	conditions	i,	ii	and	iii,	where	u2	increases	on	the	inhibition	of	u1,	

	

det[𝑪][C[𝑨]%!𝑏%

#

%:"

< det[𝑨][C[𝑪]%!𝑏% ,
#

%:"

				(2.5)	

	

while	in	conditions	iv,	v	and	vi,	where	u2	decreases	on	the	inhibition	of	u1,	

	

det[𝑪][C[𝑨]%!𝑏%

#

%:"

> det	[𝑨][C[𝑪]%!𝑏% .				(2.6)
#

%:"

	

	

	

2.1.2:	Inhibition	of	production	of	u1	

	

We	next	considered	the	effect	of	inhibiting	the	production	of	u1	by	reducing	the	weights	of	all	

the	coefficients	affecting	the	production	of	u1	(including	the	constant	term,	but	excluding	the	

degradation	coefficient)	by	a	factor	of	1-a.	At	equilibrium,	this	gives	a	system	of	the	form	

	

𝑑𝑢"
𝑑𝑡 = 0 = (1 − 𝛼)([𝑎"%𝑢% + 𝑏") −

#

%:"

𝑐"𝑢"	

and	
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𝑑𝑢$
𝑑𝑡 = 0 =[𝑎$%𝑢% + 𝑏$

#

%:"

− 𝑐$𝑢$ 	

	

for	i=2,…,N.	Rearranging	these	equations	gives	the	equilibrium	levels	of	ui	upon	inhibition	of	

strength	a,	where	

	

𝑢" = −
∑ C[𝑨]%"𝑏%(1 − 𝛼)#
%:"

det[𝑨] − 𝛼 det[𝑪] 					(2.9)	

	

and	

	

𝑢$ = −
∑ C[𝑨]%$𝑏%#
%:" − 𝛼∑ C[𝑪]%$𝑏%#

%:"

det	[𝑨] − 𝛼det	[𝑪] 	

	

for	i=2,…,N.	As	the	equation	giving	the	equilibrium	value	of	ui	where	𝑖 ≠1	is	the	same	as	that	for	

the	inhibition	of	the	response	(Equation	(2.2)),	the	shape	of	the	response	of	u2	to	an	inhibition	

of	strength	a	is	the	same	for	inhibiting	either	the	production	of,	or	the	response	to,	u1.		

	

Behaviour	of	u1:	

	

The	behaviour	of	the	equilibrium	value	of	u1	 is	again	governed	by	a	 function	of	a	 (Equation	

(2.9))	with	horizontal	and	vertical	asymptotes,	which	now	lie	at	

	

𝑢" = −
∑ C[𝑨]%"𝑏%#
%:"

det	[𝑪] 	

	

and		

 

𝛼 =
det	[𝑨]
det	[𝑪],	

	

respectively.	The	intercept	of	the	u1-axis	lies	at	
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𝑢" = −
∑ C[𝑨]%"𝑏%#
%:"

det	[𝑨] ,	

 

which	is	the	unperturbed	state	and	has	a	positive	value,	while	the	intercept	of	the	a-axis	is	at	

a = 1.	

	

Depending	on	the	relative	positions	of	the	asymptotes	and	intercepts,	 this	 function	can	take	

three	forms	(Figure	SN1	c),	for	two	of	which	(Figure	SN1	c	i,	 iii),	the	equilibrium	value	of	u1	

decreases	with	 its	 inhibition,	while	 for	 the	 remaining	one	 (Figure	SN1	c	 ii),	 the	equilibrium	

value	of	u1	increases	with	its	inhibition.	Therefore,	the	equilibrium	value	of	u1	will	increase	on	

its	inhibition	if		

	
det	[𝑨]
det	[𝑪] 	< 	0				(2.10)	

	

or	

	
det	[𝑨]
det	[𝑪] 	> 	1.					(2.11)	

	

While	the	equilibrium	value	of	u1	will	decrease	on	its	inhibition	if	

	

0 <
det	[𝑨]
det	[𝑪] < 1.					(2.12)	

	

	

2.2:	Comparison	with	a	numerically	modelled	RD	system	

Using	this	framework,	we	could	compare	the	responses	to	inhibition	for	the	full	2-	and	three-

component	 RD	 systems	 with	 the	 behaviour	 of	 the	 reaction	 terms.	 We	 took	 the	

parameterisations	 of	 the	 reaction	 terms	 used	 in	 the	 full	 RD	 simulations	 (Figure	 3	 and	

Supplementary	Figure	S11)	and	inferred	the	direction	of	response	by	calculating	the	relative	

position	of	the	asymptotes	and	intercepts.	Comparison	of	the	direction	of	the	response	to	an	

inhibition	for	the	reaction	terms	alone	and	for	the	full	RD	system	(Figure	SN2)	showed	that	the	

pattern	of	 the	 responses	 is	 very	 similar.	 This	 suggests	 that	 the	 response	 to	 an	 inhibition	 is	

predominantly	dictated	by	the	response	of	the	reaction	terms.	
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What	 about	 the	 small	 proportion	 of	 parameterisations	 for	 which	 the	 response	 of	 the	

equilibrium	values	differs	between	the	full	RD	system	and	the	analysis	of	the	reaction	terms	

alone?	Interestingly,	repeating	the	simulations,	but	reducing	the	strength	of	the	inhibition	by	a	

factor	of	0.25	or	0.252,	successively	increased	the	discrepancy	(Figure	SN2).	As	decreasing	the	

strength	of	an	inhibition	decreases	the	magnitude	of	the	response	for	the	reaction	terms,	this	

suggests	that	the	response	of	the	reaction	terms	will	dictate	the	response	of	the	full	RD	system	

provided	that	the	responses	are	sufficiently	large.	As	the	only	difference	between	the	reaction	

term	 systems	 and	 the	 full	 RD	 systems	 is	 diffusion,	 this	 suggests	 that	 if	 the	 response	 to	 an	

inhibition	 of	 the	 reaction	 terms	 is	 not	 sufficiently	 large,	 there	 can	 be	 a	 significant	 effect	 of	

diffusion,	which	in	some	cases	can	change	the	direction	of	response	generated	by	the	reaction	

terms	alone.	

	

											 	

	

This	 is	 likely	 to	 be	 generally	 true	 for	 RD	 systems	 based	 on	 the	 following	 argument.	 Large	

perturbations	 in	 reaction	 terms	will	 produce	 large	 shifts	 in	 the	mean	 value	 of	 the	 periodic	

pattern	while	changes	in	the	diffusion	terms	will	flatten	or	sharpen	the	peaks	and	troughs.	For	

example,	an	increase	in	the	reaction	term	will	increase	the	value	of	ui	in	both	peaks	and	troughs.	

% parameter sets showing 
increase in mean level

0 50 100

5-viii

5-vii

5-vi

5-iv

5-v

5-ii

4-iii

4-v

4-vi

4-iv

5-i

4-i

4-ii

5-iii

4-viii

4-vii

5-x

5-ix

Responding pathway

Inhibited pathway

W B H

Wnt BMP Hh

W B HW B H W B H

Wnt BMP Hh

W B HW B H W B H

Wnt BMP Hh

W B HW B H W B H

Wnt BMP Hh

W B HW B H

Reaction terms
Inhibition amax Inhibition 0.25.amax Inhibition 0.252.amax

Reaction-Diffusion system

Figure SN2 
Full maps showing the percentage of parameter sets where the level of each component increases in response to the 
inhibition of each component in the network in reaction term analysis and in RD simulations. The left hand heat map 
shows the response for reaction term analysis for the parameter sets used in three-component RD analysis, evaluated 
using criteria from Section 2. The second heat map, showing the Reaction-Diffusion system with inhibition strength 
amax, is a reproduction of the heat map from Figure 3, and the heat maps with inhibition strength 0.25.amax and 
0.252.amax are from reruns of the three-component RD simulations, replacing the inhibition parameter value a with 
values of 0.25.a and 0.252.a respectively. Pathway topology names are as in Figure 3.  
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For	equilibrium	to	be	restored,	the	diffusion	term	𝐷!
"!#"
"$!

	has	to	decrease.	Since	at	the	peaks,	

𝐷!
"!#"
"$!

	 is	 negative,	 this	means	 it	 has	 to	 become	more	 negative,	 i.e.	 the	 peaks	must	 become	

sharper.	Conversely,	the	troughs	must	become	flatter	(the	positive	second	derivative	becomes	

less	positive).	These	changes	in	the	curvature	of	the	peaks	and	troughs	do	not	necessarily	have	

a	net	effect	on	the	average	levels	that	are	the	same	or	opposite	to	the	reaction	term	change.	Our	

simulations,	however,	 say	 that	 their	effects	do	not	 increase	at	 the	same	rate	as	 those	of	 the	

reaction	terms.	The	simulations	suggest	that	their	role	is	more	pronounced	for	small	reaction	

term	changes	although	we	have	not	been	able	to	demonstrate	this	analytically.	 	
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3:	A	graphical	interpretation	of	the	responses	to	perturbation	

	

We	wanted	to	understand	how	the	position	of	a	component	in	a	network	affects	the	response	

of	 the	 system	 to	 its	 inhibition.	 In	 particular,	 we	 wanted	 to	 understand	 how	 the	 response	

depends	on	the	type	of	feedback	loop	the	component	is	found	in.	In	a	recent	study	Marcon	et	al.	

(2016)	 used	 such	 a	 graphical	 approach	 to	 understand	 the	 conditions	 for	 DDI,	 in	 terms	 of	

stabilizing	and	destabilizing	contributions	of	different	 feedback	loops.	This	was	based	on	an	

interpretation	of	the	determinant	as	a	combination	of	the	cycles	defined	by	the	reaction	matrix.	

As	 the	 conditions	 determining	 the	 response	 to	 perturbation	 (see	 Section	 2)	 are	 in	 part	

dependent	on	the	determinants	of	matrices	A	and	C,	we	took	a	similar	approach.	

	

In	brief,	a	matrix	M	(such	as	the	reaction	matrices	A	and	C,	or	in	the	approach	of	Marcon	et	al.	

the	Jacobian	matrix	J)	has	associated	graph	Gr[M]	which	is	a	labelled,	weighted,	directed	graph	

of	N	nodes	with	edges	from	node	j	to	node	i	of	weight	aij,	where	𝑎$% ≠ 0	are	the	elements	of	the	

matrix	M.	This	is	the	graphical	representation	of	the	reaction	network	that	we	have	been	using	

throughout	to	depict	the	signs	of	the	interactions	as	a	network	topology.	Such	a	graph	contains	

cycles,	where	a	path	can	be	traced	from	any	node,	through	a	series	of	other	nodes,	back	to	itself	

(or	directly	onto	itself	without	passing	through	any	other	nodes).	A	cycle	represents	a	positive	

feedback	loop	if	the	product	of	the	weights	of	the	edges	is	positive,	and	a	negative	feedback	loop	

if	the	product	is	negative.		

	

For	any	graph	Gr[M],	a	subgraph	can	be	defined	containing	all	the	nodes	but	only	a	subset	of	

the	edges	of	Gr[M],	such	that	each	node	receives	an	input	from	only	one	other	node	and	also	

outputs	to	only	one	other	node	(i.e.	each	node	has	both	an	in-degree	and	out-degree	of	1).	Such	

a	subgraph	is	called	a	linear	spanning	subgraph	(L-subgraph,	l),	and	is	made	up	of	a	set	of	1	to	

N	 cycles	 through	all	nodes.	The	weight	of	an	L-subgraph	w(l)	 is	given	by	 the	product	of	 the	

weights	of	these	cycles,	with	the	weight	of	each	cycle	itself	being	the	product	of	its	constituent	

edges.	The	determinant	of	the	N×N	matrix	M	 is	given	by	the	sum	of	the	weights	of	all	the	L-

subgraphs	l	of	the	graph	Gr[M],	with	signs	as	below	

	

det[𝑴] = (−1)# [ (−1)>(?)𝑤(𝑙),
?⊆@A[𝑴]

					(3.1)	
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where	s(l)	is	the	number	of	cycles	in	the	L-spanning	subgraph	l.	Equation	(3.1)	is	known	as	the	

Coates	 formula;	 for	more	details	on	 the	derivation,	 see	Marcon	et	al.	 (2016)	and	references	

therein.		

	

3.1:	Response	of	u1	

As	demonstrated	in	Section	2,	the	response	of	u1	to	its	own	inhibition	depends	on	the	sign	and	

magnitude	of	the	ratio	of	det[C]	to	det[A].	The	sign	is	determined	by	the	criteria	for	a	DDI	(see	

Section	 1).	 To	 understand	 the	 response	 of	 u1	 to	 its	 own	 inhibition	 in	 graphical	 terms,	 we	

therefore	considered	these	determinants	in	terms	of	the	feedback	loops	(or	cycles)	through	u1	

in	 matrix	 C.	 From	 Equation	 (3.1),	 each	 summand	 in	 det	[𝑪]	 can	 be	 written	 in	 the	 form	

(−1)#(−1)>(?)𝑤(𝑙),	where	l	is	a	linear	spanning	subgraph	of	Gr[C].	As	all	nodes	in	an	l-graph	

have	an	in-degree	and	an	out-degree	of	1,	for	each	summand	in	Equation	(3.1)	there	is	a	single	

cycle	 containing	 node	 u1,	 which	 comprises	 a	 set	 of	 n	 nodes,	 where	 1 ≤ 𝑛 ≤ 𝑁,	 with	 𝜅E	 a	

sequence	of	integers	{i1,i2,…,in}	which	defines	the	sequence	of	nodes	ui		through	which	the	cycles	

passes,	with	each	such	sequence	starting	at	i1=1.	If	n=1,	the	cycle	forms	an	interaction	from	u1	

directly	onto	itself,	while	if	n=N,	the	cycle	passes	through	all	nodes.	𝑆F( 	is	the	set	of	all	possible	

𝜅E,	and	𝑤(𝜅E)	 is	the	weight	of	the	cycle	defined	by	𝜅E	(positive	for	a	positive	feedback	loop,	

negative	for	a	negative	feedback	loop).	For	each	such	cycle,	where	n<N,	the	nodes	excluded	from	

the	cycle	form	an	L-graph	ln	consisting	of	1	to	N-n	cycles	between	the	remaining	nodes,	where	

𝜎(𝑙E)	is	the	number	of	remaining	cycles	(with	𝜎(𝑙E) 	= 𝜎(𝑙) − 1	as	one	cycle	has	been	removed).	

𝑤(𝑙E)	is	the	product	of	the	weights	of	the	remaining	cycles	such	that	𝑤(𝑙) = 𝑤(𝜅E)𝑤(𝑙E),	and	

𝑆?( 	is	the	set	of	all	possible	L-graphs	𝑙E	for	a	given	𝜅E.		

	

Therefore,	for	any	term	in	the	determinant,	the	loop	through	u1	can	be	factored	out	to	give		

	

(−1)#(−1)>(?)𝑤(𝑙) = −(−1)E𝑤(𝜅E)(−1)#-E(−1)	>(?()𝑤(𝑙E).		

	

Gathering	together	determinant	terms	containing	the	same	cycle	through	u1,	the	determinant	

can	be	rewritten	
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det	[𝑪] = − [ (−1)E𝑤(𝜅E)(−1)#-E [ (−1)	>(?()𝑤(𝑙E)
	

?(	⊆8)(F(⊆8*(

	

= − [ (−1)E𝑤(𝜅E)det	[𝑪(𝜅̃E)],
F(⊆8*(

					(3.2)	

	

where	𝑪(𝜅̃E)	 is	 the	 submatrix	of	C	 excluding	 the	 columns	and	 rows	defined	 in	𝜅E	 (for	n=N,	

det	[𝑪(𝜅̃E)] 	= 1,	as	it	is	the	determinant	of	a	0×0	matrix).		

	

3.1.1:	Inhibiting	the	response	to	u1	

	

As	demonstrated	in	Section	2,	the	behaviour	of	u1	on	inhibiting	the	response	to	u1	is	dependent	

on	whether	the	ratio	HIJ	[𝑨]
HIJ	[𝑪]

	is	positive	or	negative	(see	Equations	(2.3)	and	(2.4)).	Therefore,	u1	

will	increase	in	response	to	its	own	inhibition	if		

	

∑ (−1)E𝑤(𝜅E) det[𝑪(𝜅̃E)]F(⊆8*(
det[𝑨] < 0					(3.3)	

	

and	will	decrease	if	

	

∑ (−1)E𝑤(𝜅E) det[𝑪(𝜅̃E)]F(⊆8*(
det[𝑨] > 0,					(3.4)	

	

where	each	summand	contains	a	different	cycle	through	u1,	each	multiplied	by	the	determinant	

of	 the	 submatrix	 made	 of	 components	 excluded	 from	 the	 cycle.	 The	 response	 of	 u1	 to	 the	

inhibition	of	its	response	therefore	depends	on	the	natures	of	the	feedback	loops	through	u1,	

and	the	stability	of	the	components	excluded	from	the	loops.	

	

	

3.1.2:	Inhibiting	the	production	of	u1	

	

For	inhibiting	the	production	of	u1,	we	demonstrated	in	Section	2	that	the	response	of	u1	again	

depends	on	det	[𝑨]	and	det	[𝑪]	(see	inequalities	2.10	–	2.12).	First	considering	when	N	is	even,	
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from	Section	1	it	follows	that	det	[𝑨] 	> 0.	To	satisfy	the	condition	(2.10),	det	[𝑪] 	< 0,	and	as	a	

consequence,	 det	[𝑨] 	> det	[𝑪].	 Otherwise,	 det	[𝑪] 	> 0,	 and	 in	 this	 case,	 to	 also	 satisfy	

condition	(2.11),	it	follows	that	again	det	[𝑨] 	> det	[𝑪].	However,	when	condition	(2.12)	holds,	

it	 follows	 that	 det	[𝑨] 	< det	[𝑪].	 Therefore,	 when	det	[𝑨] 	< det	[𝑪],	 u1	 increases	 when	 its	

production	 is	 inhibited,	 while	 when	 det[𝑨] > det	[𝑪],	 u1	 decreases	 when	 its	 production	 is	

inhibited.	

	

As	matrices	A	and	C	only	differ	by	the	presence	or	absence	of	the	–c1	in	the	first	matrix	term,	

then		

	

det[𝑨] = det[𝑪] − 𝑐" det[𝑪(𝜅̃")],	

	

where	𝑪(𝜅̃")	is	the	submatrix	of	C,	excluding	the	first	row	and	column.	It	therefore	follows	that	

u1	will	increase	following	its	own	inhibition	if	

	

𝑐" det[𝑪(𝜅̃")] > 0,		

	

and	u1	will	decrease	following	its	own	inhibition	if		

	

𝑐" det[𝑪(𝜅̃")] < 0.	

	

Given	that	𝑐" > 0,	it	follows	that	u1	will	increase	when	its	production	is	inhibited	if	

	

det[𝑪(𝜅̃")]
det	[𝑨] > 0,					(3.5)	

	

and	will	decrease	when	

	

det[𝑪(𝜅̃")]
det	[𝑨] < 0.					(3.6)	

	

By	the	same	reasoning,	these	conditions	also	hold	if	N	is	odd.	The	response	of	u1	to	the	inhibition	

of	its	production	therefore	depends	on	the	stability	of	the	submatrix	made	from	the	remaining	

components.	
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3.2:	Response	of	u2:	

	

As	demonstrated	in	Section	2	(Equations	(2.5)	and	(2.6)),	the	response	of	component	u2	in	an	

N-component	system	to	the	inhibition	of	u1	is	in	part	determined	by	the	relative	signs	and	sizes	

of	the	determinants	det[A]	and	det[C].	The	response	to	inhibition	also	depends	on	the	terms	

∑ C[𝑨]%!𝑏%#
%:" 	 and	∑ C[𝑪]%!𝑏% ,#

%:" 	which	are	of	 the	 same	 form	as	a	determinant,	but	with	 the	

second	column	of	matrix	A	and	C	respectively	replaced	by	the	vector	of	background	production	

terms	(b1,b2,…,bN).	Therefore,	each	term	in	these	sums	can	similarly	be	interpreted	graphically,	

as	a	path	from	an	external	node	ub	to	component	u2,	with	all	components	not	involved	in	the	

path	making	up	a	 set	of	 cycles	with	each	node	having	an	 in-degree	and	an	out-degree	of	1.	

Therefore,	 for	 each	 summand,	 every	node	has	a	 single	 input	 and	a	 single	output,	 except	ub,	

which	only	has	a	single	output	and	no	input,	and	u2,	which	only	has	a	single	input	and	no	output.		

	

Conditions	(2.5)	and	(2.6)	can	be	rearranged	to	give	

	

𝑐"[C[𝑪(𝜅̃")](%-")"𝑎%"

#

%:!

[C[𝑨]%"𝑏% > 0
#

%:"

					(3.7)	

	

and	

	

𝑐"[C[𝑪(𝜅̃")](%-")"𝑎%"

#

%:!

[C[𝑨]%"𝑏% < 0,
#

%:"

					(3.8)	

	

respectively,	where	C[𝑪(𝜅̃")](%-")"	is	the	cofactor	of	the	term	aj2	from	matrix	C	in	the	submatrix	

𝑪(𝜅̃")	(as	this	submatrix	excludes	the	first	row	and	column	of	C,	this	will	be	the	cofactor	of	the	

first	column	and	the	(j-1)th	row).		

	

The	 only	 term	 in	 conditions	 (3.7)	 and	 (3.8)	 whose	 sign	 is	 not	 constrained	 is	

∑ C[𝑪(𝜅̃")](%-")"𝑎%"#
%:! .	From	Equations	(2.1)	and	(2.9),	which	describe	the	levels	of	u1	under	

inhibition,	for	the	unperturbed	state	of	u1	to	be	positive,	the	term	∑ C[𝑨]%"𝑏%#
%:" 	must	have	the	

same	sign	as	the	determinant	det	[𝑨]	(positive	if	there	are	an	even	number	of	components	and	

negative	if	there	are	an	odd	number).	Also,	−𝑐" < 0	as	it	represents	a	degradation	term.	The	

form	of	 the	sum	∑ C[𝑪(𝜅̃")](%-")"𝑎%"#
%:! 	 is	 the	same	as	 that	of	∑ C[𝑨]%"𝑏%#

%:" ,	 and	so	 it	 can	be	
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interpreted	as	a	sum	where	each	term	represents	a	path	from	component	u1	to	component	u2.	

Specifically,	

	

[C[𝑨(𝜅̃")](%-")"𝑎%"

#

%:!

= − [ (−1)E𝑤(𝑝E) det[𝑨(𝜅̃E)]
M(⊆8+(

,					(3.9)	

	

where	pn	is	a	sequence	of	integers	{i1,i2,…,in},	where	2 ≤ 𝑛 ≤ 𝑁,	starting	with	i1=1	and	ending	

with	in=2,	which	defines	the	series	of	nodes	ui	through	which	the	path	from	u1	to	u2	passes,	𝑆M( 	

is	the	set	of	all	possible	such	paths,	and	𝑤(𝑝E)	the	weight	of	the	path	pn.	The	response	of	u2	to	

the	inhibition	of	u1	therefore	depends	on	the	weight	of	the	paths	between	the	two	nodes,	and	

the	stability	of	the	components	excluded	from	the	paths.	
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4:	Constraints	on	minimal	topologies		

	

Having	 established	 graphical	 conditions	 for	 the	 response	 of	 a	 system	 to	 inhibition	 of	 each	

component,	 we	wanted	 to	 establish	 how	 the	 response	 of	 the	 system	 is	 related	 to	 network	

topology.	 As	 with	 our	 numerical	 investigation	 of	 three-component	 systems,	 we	 set	 out	 to	

understand	 the	 behavior	 of	 the	 subset	 of	 networks	 with	 the	 minimal	 requirements	 for	

patterning.	We	first	establish	the	minimal	requirements	for	a	strongly-connected	RD	system,	

before	considering	how	these	networks	respond	to	perturbation.	We	note	that	this	subject	has	

recently	been	dealt	with	extensively	by	Marcon	et	al	and	Diego	et	al,	although	as	we	assume	all	

components	degrade	by	default,	we	use	a	slightly	different	definition	of	minimal.	

	

4.1:	Identifying	minimal	topologies	

	

4.1.1:	Minimal	conditions	for	a	DDI	

	

In	 order	 to	 establish	 the	 minimal	 requirements	 for	 DDI	 we	 asked	 what	 are	 the	 fewest	

interactions	(excluding	degradation	terms)	and	feedback	loops	needed	to	satisfy	the	criteria	for	

DDI.	It	should	be	noted	that	as	we	have	been	using	a	system	of	linear	equations	in	our	reaction-

diffusion	system,	the	reaction	matrix	A	is	the	same	as	the	Jacobian	matrix	J,	and	the	number	of	

interactions	is	given	by	the	number	of	non-zero	terms	aij.	As	described	in	Section	1,	conditions	

for	DDI	that	will	always	give	rise	to	monotonically	growing	patterns	require	that	𝑎#(𝑞!) < 0.	

Considering	the	terms	that	make	up	𝑎#(𝑞!)	(Equation	(1.1)),	the	first	term	is	made	up	solely	of	

reaction	terms	and	requires	that	(−1)#det[𝑱]		>0	in	order	to	satisfy	the	criterion	of	stability	in	

the	absence	of	diffusion	(𝑎#(0) > 0).	The	third	term	is	made	up	solely	of	diffusion	coefficients	

and	the	wavelength	coefficient	q2,	both	of	which	are	positive,	meaning	that	𝑞!#𝑑𝑒𝑡[𝑫] > 0.	For	

the	remaining	terms,	which	contain	both	reaction	and	diffusion	coefficients,	as	above	for	the	

diffusion	 and	wavelength	 coefficients	 𝑞!(#-9)det[𝑫(𝛾̅9)] > 0.	 Therefore,	 the	 conditions	 for	

DDI	depend	on	the	reaction	terms	and	the	signs	of	the	various	terms	(−1)9det[𝑱(𝛾9)].	

	

We	first	considered	a	system	consisting	of	N	components,	without	any	interactions	between	

them.	These	components	will	be	only	undergoing	degradation	(i.e.	the	only	non-zero	terms	in	J	

are	on	the	diagonal,	and	are	negative	or	in	terms	of	reaction	matrix	A,	for	all	coefficients	aij=0).	

From	 Equation	 (3.1),	 the	 only	 non-zero	 summands	 of	 any	 of	 the	 submatrix	 determinants	
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det[𝑱(𝛾9)]	 in	 Equation	 (1.1)	 will	 be	 those	 consisting	 only	 of	 self-interactions	 (i.e.	 the	

degradation	terms).	It	therefore	follows	that		

	

(−1)9det[𝑱(𝛾9)] = (−1)9�𝐽(6')!(6')!

9

$:"

,				(4.1)	

		

which	will	always	have	a	positive	sign.	Therefore,	unsurprisingly,	the	condition	for	instability	

when	there	is	diffusion	cannot	be	satisfied	in	this	simple	system,	since	𝑎#(𝑞!) < 0.		

	

In	order	 to	 satisfy	 the	 conditions	 for	DDI	 there	must	be	 at	 least	 one	 term	 in	𝑎#(𝑞!)	with	 a	

negative	 sign.	 From	 Equation	 (4.1)	 this	 can	 be	 achieved	 by	 simply	 adding	 a	 single	 auto-

activation	term	for	a	component.	For	example,	if	u1	directly	activates	itself,	providing	that	this	

auto-activation	is	strong	enough	to	outweigh	the	degradation	term	for	u1	(in	terms	of	matrix	A,	

𝑎"" − 𝑐" > 0),	 a	 single	 term	 on	 the	 diagonal	 of	 the	 Jacobian	 matrix	 J11	 will	 go	 from	 being	

negative	to	positive,	resulting	in	the	sign	of	any	term	det[𝑱(𝛾9)]		for	which	𝛾9	contains	u1	also	

changing	 sign.	 Alternatively,	 this	 can	 also	 be	 achieved	 by	 the	 addition	 of	 a	 single	 positive	

feedback	loop	through	the	set	of	r	nodes	defined	by	the	sequence	𝛾A 	of	weight	𝑤(𝛾A).	For	any	

det[𝑱(𝛾9)]	where	𝛾A 	is	a	subset	of	𝛾9	

	

det[𝑱(𝛾9)] = ��𝐽(6,)!(6,)!

A

$:"

− (−1)A𝑤(𝛾A)��𝐽(6N,)%(6N,)% ,
9-A

%:"

	

	

where	𝛾_A 	is	a	complementary	sequence	of	integers	to	𝛾A 	such	that	𝛾A ∩ 𝛾_A = 0	and	𝛾A ∪ 𝛾_A = 𝛾9.	

Again,	provided	that	the	weight	of	the	positive	feedback	loop	is	greater	than	for	the	degradation	

terms,	det[𝑱(𝛾9)]	will	change	sign.	

	

However,	as	the	sign	of	any	submatrix	containing	the	positive	feedback	loop	will	change	sign,	it	

follows	that	with	the	addition	of	a	single	destabilising	positive	feedback	loop,	(−1)#det[𝑱]	<	0.	

This	will	no	longer	satisfy	the	condition	for	stability	in	the	absence	of	diffusion	𝑎#(0) > 0.	An	

additional	positive	summand	in	𝑎#(0)	is	therefore	needed	to	stabilize	the	system.	By	the	above	

reasoning,	 this	 can	most	 simply	 be	 achieved	 by	 the	 addition	 of	 a	 single	 negative	 feedback	

between	a	set	of	components	𝛾O,	where	𝛾O ≠ 𝛾A .	If	this	negative	feedback	loop	takes	the	form	of	

a	path	from	a	node	𝛾A ,	through	the	remaining	nodes	in	the	system	and	back	into	any	node	in	𝛾A ,	

a	single	additional	term	will	be	added	to	any	det[𝑱(𝛾9)]	where	𝛾O	is	a	subset	of	𝛾9	(including	
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those	for	which	𝛾A 	is	also	a	different	subset).	If	the	weight	of	this	loop	is	sufficiently	large,	then	

it	can	overcome	the	effect	of	the	positive	feedback	loop,	and	satisfy	𝑎#(0) > 0.		

	

Moreover,	as	there	will	still	exist	𝛾9	 for	which	𝛾A 	 is	a	subset,	but	not	𝛾O,	 there	will	be	terms	

𝑞!(5-9)(−1)9det[𝑱(𝛾9)]	det[𝑫(𝛾_9)]	which	will	remain	negative,	even	after	the	addition	of	a	

negative	feedback	loop	to	the	system.	Therefore,	with	the	appropriate	weighting	of	diffusion	

coefficients,	there	will	exist	conditions	where	𝑎5(𝑞!) < 0	when	k=N,	but	not	for	other	k,	while	

maintaining	 𝑎#(0) > 0.	 As	 such	 𝛾_9	 will	 by	 definition	 exclude	 components	 of	 the	 positive	

feedback	loop	through	the	nodes	in	𝛾A ,	to	achieve	such	a	weighing,	diffusion	coefficients	among	

components	in	the	negative	will	be	larger	than	those	in	the	positive	feedback	loop.	This	gives	

an	 intuitive	 understanding	 for	 then	 general	 idea	 of	 local	 auto-activation	 and	 long-range	

inhibition	 in	 RD	 systems.	 In	 summary,	 a	 system	 containing	 single	 positive	 feedback	 loop	

coupled	to	a	negative	feedback	loop	is,	therefore,	sufficient	to	satisfy	the	conditions	for	a	DDI	

for	any	size	system,	given	appropriate	strengths	of	interactions	and	diffusion	coefficients.		

	

Considering	the	minimal	requirements	for	DDI	in	terms	of	the	number	of	interactions	between	

components	in	the	interaction	matrix	A	(including	auto-activation	terms	aii,	but	not	degradation	

terms	 ci),	 in	 any	 such	 system	 a	 positive	 feedback	 loop	 through	 r	 components	 will	 add	 r	

interactions	 to	 the	 system,	 while	 the	 negative	 feedback	 loop	 though	 the	 remaining	 N-r	

components	will	add	a	 further	N-r+1	terms,	resulting	 in	a	 total	of	N+1	 interactions.	For	any	

strongly-connected	 network,	 it	 is	 clear	 than	 fewer	 than	 N+1	 interactions	 will	 not	 allow	

sufficient	feedback	loops	to	be	made	to	satisfy	the	criteria	for	DDI,	while	other	networks	made	

of	 N+1	 interactions	 (e.g.	 two	 positive	 or	 two	 negative	 feedback	 loops)	 cannot	 satisfy	 the	

conditions	for	DDI.	While	there	are	other	ways	of	satisfying	these	conditions,	they	will	require	

additional	 feedback	 loops,	 and	 therefore	 additional	 interaction.	 Therefore,	 in	 a	 system	of	N	

components,	 the	 combination	 of	 a	 single	 positive	 feedback	 loop	 through	 one	 to	 N-1	

components,	and	a	negative	feedback	loop	through	the	remaining	components	is	the	minimal	

requirement	for	a	DDI.	

	

4.1.2:	The	phase	of	minimal	DDI	systems	

	

Having	 established	 the	 architecture	 of	minimal	 topologies,	 we	 next	 sought	 to	 establish	 the	

relative	phase	of	the	components	for	each	of	these	topologies.	This	is	dictated	by	the	signs	of	
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the	 components	 of	 the	 eigenvector	 corresponding	 to	 the	 largest	 positive	 eigenvalue	 of	 the	

Jacobian	matrix:	components	with	the	same	sign	will	be	in	the	same	phase.	From	the	derivation	

of	conditions	for	DDI	in	Section	1,	we	have	the	relationship	

	

/

𝐽"" − 𝐷"𝑞! − 𝜆 𝐽"! ⋯ 𝐽"#
𝐽!" 𝐽!! − 𝐷!𝑞! − 𝜆 ⋯ 𝐽!#
⋮ ⋮ ⋱ ⋮
𝐽#" 𝐽#! ⋯ 𝐽## − 𝐷#𝑞 − 𝜆

2/

𝑢"
𝑢!
⋮
𝑢#

2 = 0.	

	

For	all	minimal	architectures,	there	is	only	one	component	that	receives	more	than	one	input	

(excluding	negative	self-interactions).	For	all	remaining	components,	 the	rows	 in	the	matrix	

will	 consist	 of	 only	 two	non-zero	 terms:	 the	 degradation	 term	on	 the	 diagonal,	 𝐽$$ 	which	 is	

therefore	 negative,	 and	 an	 additional	 input	 term	 from	 another	 component	 𝐽$% ,	 whose	 sign	

depends	on	the	nature	of	the	input.	Therefore,	each	of	these	rows	will	take	the	form		

	

(𝐽$$ − 𝐷$𝑞! − 𝜆)𝑢$ + 𝐽$%𝑢% = 0.	

	

By	definition,	for	a	DDI	l>0,	meaning	that	𝐽$$ − 𝐷$𝑞! − 𝜆 < 0.	Consequently,	ui	and	uj	will	have	

the	same	sign,	and	therefore	be	in-phase	with	each	other	if	Jij	is	positive,	while	they	will	have	

opposing	signs	and	be	out-of-phase	for	negative	Jij.	Therefore,	the	relative	phase	of	successive	

components	 in	 the	 positive	 and	 negative	 feedback	 loops	 can	 be	 inferred	 from	 the	 signs	 of	

interaction	 between	 them,	 with	 the	 exception	 of	 the	 interaction	 from	 a	 component	 in	 the	

negative	feedback	loop	feeding	into	the	positive	feedback	loop.	Moreover,	two	components	will	

be	 in-phase	 if	 the	weight	of	 the	path	between	them	is	positive,	and	out-of-phase	 if	negative,	

unless	the	path	passes	from	the	negative	feedback	loop	into	the	positive	feedback	loop,	in	which	

case	the	relationship	will	be	reversed.	This	is	in	keeping	with	recent	finding	on	the	relationship	

between	topology	and	phase	by	Diego	et	al.	

	

	

4.2:	Responses	to	perturbation	of	minimal	topologies	

	

Having	 established	minimal	 conditions	 for	DDI,	we	 next	 asked	 how	 these	minimal	 systems	

respond	to	the	inhibition	of	the	different	components.	In	particular,	as	these	systems	consist	

only	of	a	single	positive	and	a	single	negative	feedback	loop,	we	considered	how	the	response	

to	inhibition	depends	on	the	placement	of	a	component	relative	to	these	two	loops.		
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4.2.1:	Inhibition	of	response	

	

For	the	inhibition	of	response	to	u1,	in	Section	3.1.1,	conditions	(3.3)	and	(3.4),	it	was	shown	

that	the	response	is	dependent	on	the	sign	of		

	

∑ (−1)E𝑤(𝜅E) det[𝑪(𝜅̃E)]F(⊆8*(
det[𝑨] 	,				(4.2)	

	

where	 each	 summand	 corresponds	 to	 a	 different	 feedback	 loop	 through	 u1.	 For	 minimal	

topologies,	 the	 sign	of	 each	 summand	depends	on	 two	 features:	whether	 the	 feedback	 loop	

supported	by	u1	is	a	positive	or	negative	feedback	loop	(given	by	𝑤(𝜅E)),	and	whether	the	nodes	

excluded	 from	 this	 loop	 support	 a	 positive	 feedback	 loop	 (given	 by	 det[𝑪(𝜅̃E)]).	 For	 each	

summand,	𝑤(𝜅E)	will	be	negative	if	it	represents	a	negative	feedback	loop	and	positive	for	a	

positive	 feedback	 loop.	 However,	 the	 relationship	 between	 the	 sign	 of	det	[𝑪(𝜅̃E)],	 and	 the	

feedback	 loops	 contained	 depends	 on	 the	 number	 of	 nodes	 in	 the	 system	 described	 by	

submatrix	𝑪(𝜅̃E)	 (see	 Section	 1).	 Considering	 all	 possible	 combinations	 of	 odd	 and	 even	

numbers	 of	 components	 in	 matrix	 A	 and	 submatrix	 𝑪(𝜅̃E),	 it	 can	 be	 seen	 that	

(−1)Edet	[𝑪(𝜅̃E)]	/det	[𝑨]	will	always	be	negative	if	submatrix	𝑪(𝜅̃E)	contains	a	single	positive	

feedback	loop,	and	will	be	positive	if	it	only	contains	negative	feedback	loops.	

	

As	minimal	systems	only	contain	a	single	positive	feedback	loop	and	a	single	negative	feedback	

loop,	submatrix	𝑪(𝜅̃E)	will	always	contain	only	negative	feedback	loops	as	the	two	loops	must	

share	at	least	one	component.	Therefore,	each	summand	in	Equation	(4.2)	will	be	positive	if	it	

represents	a	positive	feedback	loop	and	negative	if	it	represents	a	negative	feedback	loop.	For	

certain	placements	in	a	minimal	network,	u1	will	only	fall	in	one	feedback	loop,	and	there	will	

be	a	single	non-zero	summand	in	Equation	(4.2).	Therefore,	if	u1	is	only	found	in	the	positive	

feedback	loop	it	will	decrease	on	its	inhibition,	and	if	it	is	found	only	in	the	negative	feedback	

loop	it	will	increase	on	its	inhibition.	However,	for	some	placements	in	a	minimal	network	u1	

will	 be	 in	 both	 positive	 and	 negative	 feedback	 loops.	 In	 these	 instances,	 there	will	 be	 two	

summands	in	Equation	(4.2),	one	positive	and	the	other	negative.	The	response	of	the	system	

will	depend	on	the	relative	magnitude	of	each	term,	with	both	an	increase	and	a	decrease	in	u1	

possible.	These	constraints	are	summarised	in	Figure	4b.	

	

4.2.2:	Inhibition	of	production	
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As	shown	in	Section	3.1.2,	conditions	(3.5)	and	(3.6),	the	response	of	u1	to	the	inhibition	of	its	

own	 production	 is	 determined	 by	 the	 sign	 of	 det	[𝑪(𝜅̃")]	 relative	 to	 det	[𝑨].	 This	 in	 turn,	

depends	on	whether	the	system	described	by	the	submatrix	excluding	u1	contains	the	positive	

feedback	loop	of	the	minimal	network	or	not.	If	u1	is	excluded	from	the	positive	feedback	loop,	

the	submatrix	determinant	det	[𝑪(𝜅̃")]	will	therefore	contain	the	single	positive	feedback	loop	

in	the	system.	As	matrix	𝑪(𝜅̃")	by	definition	has	one	fewer	component	than	matrix	A,	as	detailed	

in	equation	3.1,	det	[𝑨]	and	det	[𝑪(𝜅̃")]	will	have	the	same	sign.	However,	if	u1	is	included	from	

the	positive	feedback	loop,	regardless	of	whether	it	is	also	part	of	the	negative	feedback	loop,	

det	[𝑪(𝜅̃")]	will	only	represents	negative	feedback	loops,	and	det	[𝑨]	and	det	[𝑪(𝜅̃")]	will	have	

opposite	signs.	Therefore,	if	u1	is	excluded	from	the	positive	feedback	loop,	it	will	increase	upon	

inhibition	its	production,	while	if	it	is	part	of	the	positive	feedback	loop	(whether	or	not	it	is	

also	 in	 the	 negative	 feedback	 loop)	 it	 will	 decrease	 if	 its	 production	 is	 inhibited.	 These	

constraints	are	summarized	in	Figure	4b.	

	

4.2.3:	Response	of	u2	

	

Conditions	 for	 the	response	of	component	u2	 to	 inhibition	of	component	u1	were	defined	 in	

supplemental	note	3,	conditions	3.7	and	3.8.	Writing	these	in	terms	of	paths	between	u1	and	u2	

(see	equation	3.9)	the	response	of	u2	depends	on	the	sign	of	

	

− [ (−1)E𝑤(𝑝E) det[𝑪(𝜅̃E)]
M(⊆8+(

[C[𝑨]%"𝑏% ,				(4.3)
#

%:"

	

	

where	each	summand	contains	a	different	path	from	u1	to	u2.	Written	in	this	form,	it	is	apparent	

that	the	response	of	u2	to	the	inhibition	of	u1	is	again	dependent	on	two	topological	features	of	

the	minimal	system:	the	weight	of	the	path	from	component	u1	to	u2	(given	by	the	term	𝑤(𝑝E))	

and	whether	 the	nodes	excluded	 from	 this	path	 support	 a	positive	 feedback	 loop	 (given	by	

det[𝑪(𝜅̃E)]).		

	

If	 there	only	exists	 a	 single	path	 from	u1	 to	u2,	 there	will	 only	be	a	 single	non-zero	 term	 in	

Equation	(4.3).	As	shown	in	the	above	analysis	of	the	phase	relationship	(Section	4.1.2),	the	sign	

of	the	path	𝑤(𝑝5)	will	be	positive	if	u1	and	u2	are	in-phase	and	negative	if	out-of-phase.	The	only	

exception	is	when	u1	is	excluded	from	the	positive	feedback	loop	but	the	path	to	u2	passes	into	
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or	 through	 the	positive	 feedback	 loop,	 in	which	 case	 the	 relationship	between	 the	nodes	 is	

reversed.	As	detailed	in	Equation	(3.1),	the	relationship	between	the	sign	of	det	[𝑪(𝜅̃E)]	and	the	

feedback	 loops	 contained	 depends	 on	 the	 number	 of	 nodes	 in	 the	 system	 described	 by	

submatrix	𝑪(𝜅̃E)	(see	Section	1).	Again,	considering	all	possible	combinations	of	odd	and	even	

numbers	of	components	in	submatrices	𝑪(𝜅̃E)	and	path	𝑤(𝑝5),	and	given	that	∑ C[𝑨]%"𝑏%#
%:" 	has	

the	 same	sign	as	det	[𝑨]	 (see	Section	2),	 the	 term	– (∑ C[𝑨]%"𝑏%#
%:" )(−1)Edet	[𝑪(𝜅̃E)]	will	 be	

positive	if	det	[𝑪(𝜅̃E)]	contains	the	destabilising	positive	feedback	loop,	and	negative	otherwise.	

	

Therefore,	 considering	 all	 possible	placements	 of	u1	 and	u2	 relative	 to	 the	 two	 loops	of	 the	

minimal	 system	 it	 can	be	 seen	 that	 if	u1	 is	 in	 the	positive	 feedback	 loop	 (and	 therefore	 the	

positive	feedback	loop	is	not	found	in	submatrix	𝑪(𝜅̃E)),	u2	will	decrease	if	it	is	in-phase	with	

u1,	and	increase	if	out-of-phase.	However,	if	u1	is	excluded	from	the	positive	feedback	loop,	u2	

will	increase	if	it	is	in-phase	with	u1,	and	decrease	if	out-of-phase,	as	either	the	path	to	u2	will	

pass	from	the	negative	feedback	loop	into	the	positive	feedback	loop,	or	this	path	will	exclude	

components	from	the	positive	feedback	loop.	These	constraints	are	summarized	in	Figure	4b.	

	

It	should	be	noted	that	in	certain	instances	when	u1	and	u2	lie	in	both	the	positive	and	negative	

feedback	loop,	two	paths	can	be	traced	from	u1	to	u2:	one	consisting	of	interactions	only	found	

in	 the	 positive	 feedback	 loop,	 and	 the	 other	 comprising	 ones	 only	 found	 in	 the	 negative	

feedback	loop.	There	will	therefore	be	two	summands	in	Equation	(4.3),	one	associated	with	

each	path,	and	they	will	be	of	opposing	signs.	Therefore,	the	response	of	u2	to	the	inhibition	of	

u1	will	depend	on	the	relative	weight	of	each	path,	and	it	can	either	increase	or	decrease.		

	

It	should	be	noted	that	while	the	response	of	u2	 to	the	inhibition	of	u1	 is	not	constrained	by	

topology	in	these	instances,	it	is	coupled	with	the	responses	of	other	components	in	the	system.	

Factoring	out	all	coefficients	shared	between	the	two	summands	leaves		

	

�−1)P-Q(P-)𝑤(𝑝P-� det[𝑾(𝜅̃P-)] + �−1)P-Q(P.)𝑤(𝑝P.� det[𝑾(𝜅̃P.)],				(4.4)	

	

where	matrix	W	is	the	submatrix	𝑨(𝛾P)	comprising	the	w	components	supporting	the	two	paths	

defined	by	𝛾P .	The	terms	𝑤(𝑝P-)	and	𝑤(𝑝P.)	give	the	weights	of	the	paths	through	the	positive	

and	 negative	 loops,	 respectively,	 𝜈(𝑤R)	 and	 𝜈(𝑤-)	 the	 numbers	 of	 components	 in	 the	

respective	paths,	and	𝑾(𝜅̃P-)	and	𝑾(𝜅̃P-)	the	submatrices	of	W	comprising	the	components	

excluded	from	the	respective	paths.	This	same	sum	is	also	left	when	considering	the	response	
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of	u1	to	its	own	inhibition	if	it	falls	in	both	feedback	loops,	and	shared	terms	are	factored	out	of	

Equation	(4.2).	In	both	instances,	if	the	weight	through	the	positive	feedback	loop	is	greater	

than	that	through	the	negative	feedback	loop,	that	is	

	

��−1)P-Q(P-)𝑤(𝑝P-� det[𝑾(𝜅̃P-)]� > ��−1)P-Q(P.)𝑤(𝑝P.� det[𝑾(𝜅̃P.)]�,	

	

then	u1	will	decrease	on	its	own	inhibition,	as	will	any	in-phase	components,	with	out-of-phase	

components	increasing.	However,	when	the	inequality	is	reversed	and	u1	increases	on	its	own	

inhibition,	the	response	of	any	component	to	which	the	two	paths	can	be	traced	will	be	coupled,	

increasing	if	it	is	in-phase,	and	decreasing	if	out-of-phase.		

	

4.3:	Adding	nodes	to	minimal	topologies	

	

In	the	above	analysis	of	the	criteria	for	a	minimal	topology	(Section	4.1.1)	we	only	considered	

strongly-connected	networks,	where	the	two	feedback	loops	comprise	all	N	components.	For	

systems	 where	 the	 two	 loops	 only	 pass	 through	 a	 subset	 of	 components,	 if	 the	 remaining	

components	respond	passively	(i.e.	do	not	feed	back	into	the	system)	each	component	will	only	

add	a	single	interaction.	Like	the	strongly-connected	networks	these	networks	also	have	two	

loops	and	N+1	interactions.		

	

These	passive	components	can	be	wired	back	into	the	minimal	RD	‘core’	by	adding	interactions	

from	the	passive	components	back	to	the	core.	If	the	weights	of	any	additional	interactions,	or	

the	weights	of	additional	loops	generated	by	them,	are	not	excessively	large,	the	criteria	for	DDI	

will	 still	 be	met,	 and	 the	 phase	 relationship	 of	 the	 related	 not	 strongly-connected	minimal	

topology	will	 also	 be	maintained.	While	 the	 resulting	 topologies	 are	not	 strictly	minimal	 in	

terms	 of	 the	 number	 of	 loops	 or	 interactions,	 they	 comprise	 additional	 strongly-connected	

networks	which	satisfy	the	conditions	for	DDI.	Moreover,	as	the	removal	of	an	interaction	will	

either	result	in	the	system	either	no	longer	satisfying	the	criteria	for	DDI	or	no	longer	being	

strongly-connected,	we	will	 also	 consider	 such	 topologies	 as	 an	 additional	 form	of	minimal	

topology.	

	

We	will	now	consider	the	effect	of	inhibition	on	networks	with	additional	components	wired	in	

outside	of	the	RD	‘core’.	We	first	will	consider	the	case	where	there	is	a	single	component	u1,	

external	 to	 the	 core,	 and	 the	 effect	 of	 inhibiting	 this	 component	 on	 its	 own	 levels,	 before	
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considering	 the	 effect	 of	 inhibiting	 u1	 on	 core	 components.	We	 then	 consider	 the	 effect	 of	

external	interactions	on	the	core.	

	

4.3.1:	Effect	on	self	

	

The	addition	of	a	single	component	external	to	the	RD	core	will	generally	result	in	the	addition	

of	a	single	positive	feedback	loop	to	the	system	(we	will	discuss	below	the	subset	of	cases	where	

the	addition	of	a	single	component	results	in	the	addition	of	two	loops).		

	

Inhibition	of	response	

	

As	for	the	minimal	topologies	(Section	4.2.1)	when	the	response	to	u1	is	inhibited,	the	behaviour	

of	u1	depends	on	the	sign	of	the	sum	in	Equation	(4.2).	This	sum	will	consist	of	a	single	term,	

and	as	before,	 the	sign	of	 this	 term	depends	 in	part	on	whether	or	not	 the	submatrix	𝑪(𝜅̃E)	

contains	 the	 destabilising	 core	 positive	 feedback	 loop,	 and	 also	whether	 this	 loop	 supports	

positive	 or	 negative	 feedback.	We	will	 ask	 how	 the	wiring	 of	 this	 loop	 relative	 to	 the	 core	

positive	 feedback	 loop,	 along	 with	 the	 weighting	 of	 the	 loop,	 determines	 the	 response	 to	

inhibition.	

	

We	will	first	consider	when	the	feedback	loop	through	u1	includes	components	from	the	core	

positive	 feedback	 loop.	 In	 this	 case	 submatrix	𝑪(𝜅̃E)	 contains	 only	 negative	 feedback	 loops	

and	(−1)Edet	[𝑪(𝜅̃E)]	/det	[𝑨]	will	be	positive.	 If	u1	 itself	 supports	a	positive	 feedback	 loop,	

condition	 (3.4)	will	be	 satisfied	and	u1	will	decrease	on	 its	own	 inhibition.	Conversely,	 if	u1	

supports	a	negative	feedback	loop,	condition	(3.3)	will	be	satisfied	and	u1	will	increase	on	its	

own	inhibition.	These	relationships	are	reversed	if	the	loop	through	u1	does	not	pass	through	

any	components	 in	 the	 core	positive	 feedback	 loop.	 If	 this	 is	 the	 case,	 submatrix	𝑪(𝜅̃E)	will	

contain	 the	 core	 positive	 feedback	 loops	 and	(−1)Edet	[𝑪(𝜅̃E)]	/det	[𝑨]	 will	 be	 negative	

(otherwise	conditions	for	DDI	cannot	be	met	—	see	Section	1).	In	this	instance,	if	u1	supports	a	

positive	 feedback	 loop,	condition	(3.3)	will	now	be	satisfied	and	u1	will	 increase	on	 its	own	

inhibition,	while	if	u1	supports	a	negative	feedback	loop,	condition	(3.4)	will	be	satisfied	and	u1	

will	decrease	on	its	own	inhibition.	

	

Interestingly,	the	response	of	u1	to	its	inhibition	does	not	correlate	directly	with	the	feedback	

loop	u1	supports,	but	rather	with	the	net	feedback	provided	to	the	core	positive	feedback	loop	
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(i.e.	the	weight	the	path	from	u1	to	a	core	positive	feedback	component	multiplied	by	the	weight	

of	the	return	path).	If	u1	supports	a	net	positive	feedback,	it	will	decrease	on	its	own	inhibition,	

while	 if	 it	 provides	 a	 net	 negative	 feedback,	 it	 will	 increase	 on	 its	 own	 inhibition.	 These	

constraints	are	summarized	in	Figure	4d.	

	

Inhibition	of	production	

	

As	demonstrated	in	Section	3,	the	response	to	the	inhibition	of	production	is	dependent	on	the	

sign	of	det	[𝑪(𝜅̃")]	relative	to	det	[𝑨]	(condition	(3.5)	or	(3.6)).	As	det[𝑨]	and	det[𝑪]	only	differ	

by	the	presence	of	the	degradation	coefficient	c1	in	the	first	matrix	term	it	follows	that		

	

1 =
−(−1)E𝑤(𝜅E) det[𝑪(𝜅̃E)] − 𝑐" det[𝑪(𝜅̃")]

det	[𝑨] .	

	

In	the	above	analysis	of	the	inhibition	of	response,	we	demonstrated	how	network	topology	

(i.e.	the	sign	of	the	loop	containing	u1,	and	how	this	feeds	into	the	core	RD	network)	determines	

the	sign	of	(−1)E𝑤(𝜅E)det	[𝑪(𝜅̃E)]	/det	[𝑨].	From	these	arguments,	it	follows	that	if	u1	supports	

a	net	positive	feedback,		−𝑐" det[𝑪(𝜅̃")]/ det	[𝑨]	must	be	negative.	As	−𝑐"	is	negative,	condition	

(3.6)	will	be	satisfied	and	u1	will	decrease.	However,	if	u1	supports	a	net	negative	feedback,	the	

sign	of		−𝑐" det[𝑪(𝜅̃")]/ det	[𝑨]	is	not	constrained	and	therefore	both	conditions	(3.5)	and	(3.6)	

can	be	satisfied.	Therefore,	u1	will	decrease	on	the	inhibition	of	its	production	if	it	provides	a	

net	positive	feedback	to	the	core	positive	feedback	loop,	but	depending	on	the	strength	of	the	

different	feedback	loops,	u1	will	either	increase	or	decrease	when	its	production	is	inhibited	if	

it	provides	a	net	positive	feedback.	These	constraints	are	summarized	in	Figure	4d.	

	

It	should	be	noted	that	in	some	instances	where	u1	feeds	into	and	out	of	the	core	RD	network	

at	components	which	are	found	in	both	core	positive	and	negative	feedback	loops,	it	is	possible	

that	 a	 second	 loop	 supported	 by	 u1,	 through	 components	 only	 found	 in	 the	 core	 negative	

feedback	loop,	will	also	exist.	In	this	case	the	two	terms	describing	alternate	paths	through	the	

positive	 feedback	 loop	 and	 negative	 loop	 (see	 Section	 4.4)	 will	 again	 remain	 after	 shared	

components	are	factored	out.	As	discussed	above,	in	the	cases	where	the	magnitude	of	the	path	

through	the	negative	feedback	loop	is	greater	than	the	path	through	the	positive	feedback	loop,	

the	relationships	between	the	response	of	u1	to	its	own	inhibition	and	the	feedbacks	it	supports	

described	here	will	also	be	inverted.	
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4.3.2:	Effect	on	core	components	

	

We	will	now	consider	the	how	inhibiting	the	external	component	u1	affects	a	core	component	

u2.	We	will	consider	the	effect	of	whether	u1	feeds	directly	into	the	positive	or	negative	feedback	

loop	 of	 the	 core	 RD	 network,	 and	 on	whether	u2	 itself	 lies	 in	 the	 core	 positive	 or	 negative	

feedback	loop.	As	for	minimal	systems	(Section	4.2.2),	u2	will	decrease	on	the	inhibition	of	u1	if	

the	 sign	of	 the	path	 from	u1	 to	u2	 is	positive,	 unless	 the	 submatrix	determinant	det	[𝑪(𝜅̃E)]	

contains	the	positive	feedback	loop	of	the	core	RD	network.	Likewise,	u2	will	increase	if	the	path	

from	u1	to	u2	is	negative,	unless	the	path	excludes	the	core	RD	network	positive	feedback	loop.		

	

If	u1	 feeds	into	the	core	RD	network	through	the	positive	feedback	loop,	det	[𝑪(𝜅̃E)]	will	not	

contain	 the	 core	 positive	 feedback	 loop.	 The	 response	will	 therefore	 depend	on	 the	 sign	 of	

𝑤(𝑝5),	such	that	if	u1	itself	supports	a	positive	feedback	loop,	the	weight	of	the	path	from	u1	to	

u2	will	be	positive	if	u1	and	u2	are	in-phase,	and	negative	if	they	are	out-of-phase.	Therefore,	u2	

will	decrease	if	it	is	in-phase	with	u1	and	increase	if	it	is	out	of	phase.	The	opposite	will	occur	if	

u1	 is	 in	a	negative	 feedback	 loop,	with	the	 level	of	u2	 increasing	 if	 it	 is	 in-phase	with	u1	and	

decreasing	if	it	is	out-of-phase.	

	

We	next	consider	the	case	when	u1	feeds	into	the	core	through	the	negative	feedback	loop.	If	u2	

is	also	found	in	this	loop,	and	the	path	from	u1	does	not	pass	through	the	core	positive	feedback,	

the	sign	of	the	path	will	be	positive	if	the	components	are	in-phase	and	negative	if	they	are	out-

of-phase,	provided	u1	supports	a	positive	feedback	loop	(and	therefore	provides	a	net	negative	

feedback	 to	 the	 core	 positive	 feedback	 loop).	 The	 reverse	 is	 true	 if	u1	 supports	 a	 negative	

feedback	loop	(and	thus	a	net	positive	feedback).	As	the	core	positive	feedback	components	are	

found	in	det	[𝑪(𝜅̃E)],	if	u2	is	in-phase	with	u1	it	will	decrease	on	inhibition	if	u1	provides	a	net	

positive	 feedback,	 and	 out-of-phase	 components	 will	 increase,	 with	 the	 reverse	 true	 if	 u1	

provides	a	net	negative	feedback.	The	same	is	also	true	when	u1	feeds	into	the	core	negative	

feedback	loop,	but	the	path	to	u2	passes	into	or	through	the	core	positive	feedback	loop.	When	

the	core	positive	feedback	components	are	found	no	longer	in	submatrix	 𝑪(𝜅̃E)	and	therefore	

the	sign	of	det	[𝑪(𝜅̃E)]	is	reversed,	the	relationship	between	the	signs	of	the	path	from	u1	to	u2	

and	the	phase	relationship	are	now	inverted	by	passing	back	into	the	core	positive	feedback	

loop,	maintaining	the	above	relationship.	
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Therefore,	regardless	of	where	the	path	from	u1	feeds	into	the	core	RD	network,	if	u1	provides	

a	net	negative	feedback	loop,	u2	will	increase	if	it	is	in-phase	with	u1,	and	decrease	if	it	is	out-

of-phase.	The	opposite	will	be	true	if	u2	supports	a	net	positive	feedback.	These	constraints	are	

summarized	in	Figure	4d.	Again,	there	can	be	instances	where	two	paths	of	opposing	sign	can	

be	traced	from	u1	to	u2	if	u1	feeds	into	a	component	found	in	both	core	loops	and	u2	is	also	found	

in	both	loops.	The	response	is	again	dependent	on	the	sign	of	Equation	(4.4),	with	the	above	

responses	 inverted	 if	 the	magnitude	 of	 the	 term	 relating	 to	 the	 path	 through	 the	 negative	

feedback	loop	is	greater	than	those	relating	to	the	positive	feedback	loop,	with	all	components	

receiving	input	from	the	two	paths	responding	in	a	coupled	manner.		

	

4.3.3:	Effect	of	adding	external	components	to	an	RD	system		

	

Finally,	we	considered	 the	effect	 adding	external	 components	 to	existing	 constraints	on	 the	

system.	We	asked	whether	the	addition	of	an	external	component	could	change	the	behaviours	

within	the	minimal	RD	core.	As	shown	above,	a	major	feature	determining	the	response	of	a	

component	in	a	minimal	RD	network	either	to	its	own	inhibition,	or	the	inhibition	of	another	

component,	is	whether	or	not	various	submatrices	contain	the	destabilizing	positive	feedback	

loop	of	the	core	RD	network.	In	some	instances,	the	addition	of	loops	can	change	the	stability	

of	these	submatrices,	either	making	stable	submatrices	unstable	by	adding	a	positive	feedback	

loop,	 or	 making	 unstable	 submatrices	 stable	 by	 the	 addition	 of	 further	 negative	 feedback.	

However,	it	should	be	noted	that	as	the	various	loops	and	paths	that	determine	the	behaviours	

within	the	core	will	still	be	present,	only	certain	placements	of	feedback	loops	have	such	effects,	

and	that	they	only	affect	certain	components	under	particular	parameterisations.	There	will	

still	exists	parameterisations	where	the	responses	described	above	(summarized	in	Figure	4b)	

are	maintained.		

	

The	constraints	applying	to	the	addition	of	one	external	component	will,	therefore,	apply	to	any	

number	of	external	components,	provided	that	the	magnitudes	of	additional	interactions	are	

not	 sufficiently	 large	 to	 change	 the	 stability	 of	 any	 submatrices.	 This	 also	 opens	 up	 the	

possibility	of	considering	potential	interactions	between	external	components	u1	and	u2	(for	

simplicity	we	will	only	consider	the	cases	where	the	path	between	u1	and	u2	passes	through	the	

core).	The	path	will	contain	the	path	from	u1	to	a	core	component,	plus	an	additional	interaction	

to	 u2.	 Therefore,	 the	 response	 of	 u2	 to	 the	 inhibition	 of	 u1	 will	 be	 the	 same	 as	 that	 of	 the	

preceding	core	component	in	the	path	if	the	final	interaction	is	positive,	and	the	opposite	if	it	is	
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negative.	The	same	 is	 true	of	 the	response	of	external	u2	 to	a	core	u1.	Consequently,	 if	u1	 is	

involved	 in	 positive	 feedback	 (either	 as	 the	 core	 loop	 or	 as	 a	 source	 of	 additional	 positive	

feedback),	then	u2	will	decrease	if	it	is	in-phase	with	u1,	and	increase	if	it	is	out-of-phase,	while	

if	u1	provides	negative	feedback	the	reverse	is	true.	As	has	been	discussed	above,	when	two	

paths	can	be	traced	from	u2	to	u1,	if	the	path	through	the	negative	feedback	loop	has	a	greater	

weighting	these	relationships	will	be	inverted	coupled	to	other	such	components.	

	

Taken	together,	the	effects	of	inhibiting	u1	on	itself,	and	on	u2	primarily	depend	on	whether	u1	

falls	 in	 the	 core	 positive	 feedback	 loop,	 or	 provides	 an	 additional	 net	 positive	 feedback,	 or	

whether	it	provides	negative	feedback.	While	for	some	parameterisations	of	some	topologies,	

certain	 components	 will	 behave	 differently,	 these	 constraints	 on	 the	 behavior	 of	 minimal	

systems	provide	a	framework	to	consider	the	behavior	of	RD	networks	in	response	to	inhibition	

experiments.		

	

References	

Desoer,	C.	A.	(1960).	"The	Optimum	Formula	for	the	Gain	of	a	Flow	Graph	or	a	Simple	Derivation	
of	Coates'	Formula."	Proceedings	of	the	IRE	48(5):	883-889.	

	 	
Marcon,	L.,	X.	Diego,	J.	Sharpe	and	P.	Muller	(2016).	"High-throughput	mathematical	analysis	
identifies	Turing	networks	for	patterning	with	equally	diffusing	signals."	Elife	5.	

	 	
Murray,	J.	D.	(2003).	Mathematical	Biology,	Berlin:	Springer-Verlag.	

	 	
White,	K.	A.	J.	and	C.	A.	Gilligan	(1998).	"Spatial	heterogeneity	in	three	species,	plant–parasite–
hyperparasite,	systems."	Philosophical	Transactions	of	the	Royal	Society	of	London.	Series	B:	
Biological	Sciences	353(1368):	543-557.	

  

	

 

Development: doi:10.1242/dev.190553: Supplementary information

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n




