

Figure S1. Analysis of integrin expression in freshly sorted mammary luminal cells from 16-weeks-old virgin mice. Related to Figure 1.

(A) Dot plot showing separation of luminal cell populations by flow cytometry on the basis of CD24 and ICAM1 expression. L-Neg: Luminal ICAM-negative population; L-pos: Luminal ICAM-positive (clonogenic) population.

(B) Flow cytometry analysis of integrin expression in L-Neg and L-pos cells separated as shown in (A).

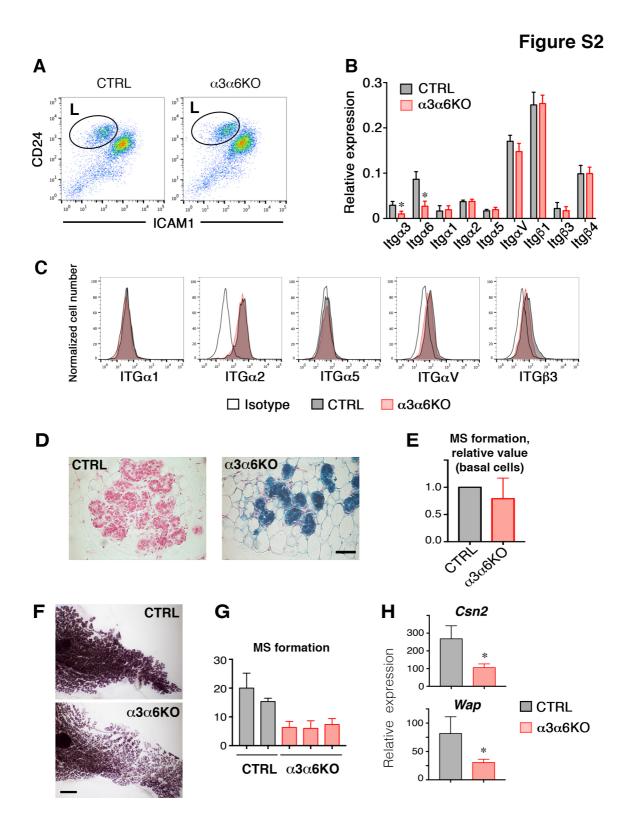


Figure S2. Analysis of integrin expression in mammary luminal cells isolated from 15-day-pregnant mice. Related to Figure 1.

(A) Dot plot showing separation of basal and luminal cells from 15-day-pregnant mammary glands by flow cytometry. L: luminal cells.

(B) RT-qPCR analysis of integrin gene expression in freshly isolated luminal cells sorted from 15-day-pregnant mammary glands as illustrated in A. The values were normalized to *Gapdh* and presented as means+SD from three independent experiments. p = 0.05 for *Itga3* and 0.03 for *Itga6*.

(C) Flow cytometry analysis of integrin expression in mammary luminal cells from control and α 3 α 6KO females.

(D) Sections through 15-day-pregnant control and $\alpha 3\alpha 6$ KO mouse mammary glands. X-gal staining. Bar, 40 μ m.

(E) Mammosphere formation by basal cells sorted from 15-day-pregnant mouse mammary glands. The values shown are means<u>+</u>SD obtained in 3 independent experiments.

(F) 18-day-pregnant control and α 3 α 6KO mammary glands stained with Carmine in whole-mount (bar, 2 mm).

(G) Mammosphere formation by luminal cells sorted from 18-day-pregnant mouse mammary glands. The values shown are means<u>+</u>SD of mammospheres obtained in 3 well replicates obtained with 10000 cells from two control and three $\alpha 3\alpha 6$ KO females.

(H) RT-qPCR analysis of milk protein gene expression in freshly sorted luminal cells from 18-day-pregnant mouse mammary glands. The values shown are means<u>+</u>SD obtained from 4 control and 4 α 3 α 6KO females. * p = 0.024 for *Csn2* and 0.048 for *Wap*.

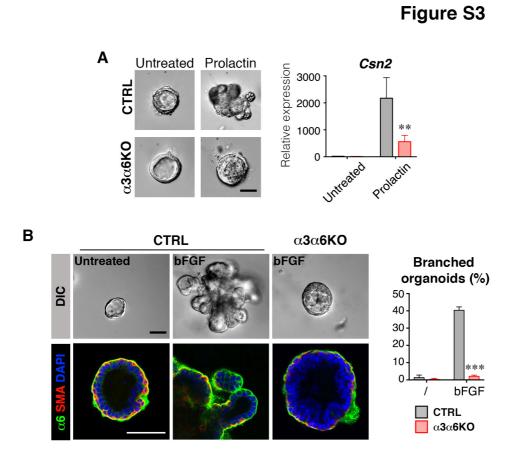
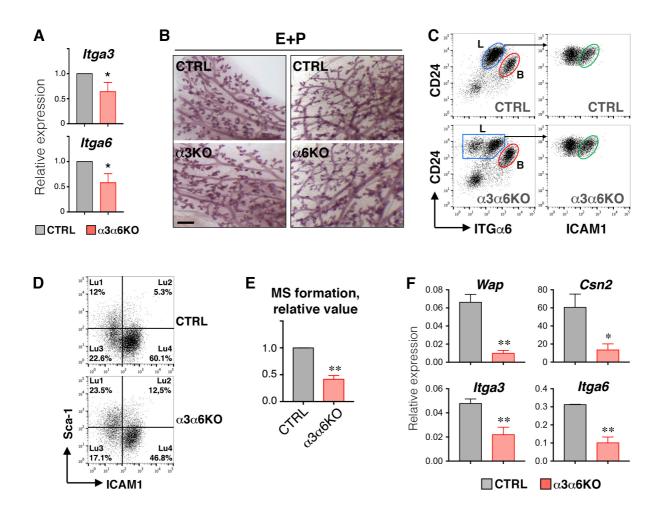



Figure S3. Analysis of mammary organoids obtained from 15-day-pregnant mammary glands. Related to Figure 1.

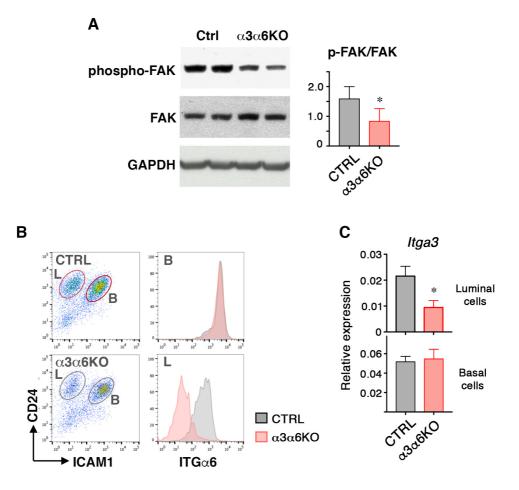
(A) Left: DIC images of mammary organoids after 10 days of culture in the presence or absence of prolactin. Bar, 30 μ m. Right: RT-qPCR analysis of *Csn2* gene expression in mammary organoides cultured for 8-12 days in the presence or absence of prolactin. Means+SD from 4 independent experiments are shown. p = 0.007.

(B) Mammary organoids after 5 days of culture in the presence or absence of bFGF. Upper panels, representative contrast microscopy (DIC) images. Lower panels, immunofluorescence labeling with antibodies against α 6 integrin and anti α -SMA, confocal microscopy. DAPI served to visualize nuclei. Bar, 30 μ m in upper panels and 50 μ m in lower panels. The graph represents the percentage of branched organoids (i.e., with 3 branches at least). Means+SD from three independent experiments are shown. p = 0.000005.

Figure S4. Effect of E/P stimulation on mammary glands. Related to Figure 2.

(A) RT-qPCR analysis of integrin gene expression in luminal cells sorted from mammary glands stimulated with E/P. The values were normalized to *Gapdh* and presented as means+SD from four independent experiments. p = 0.03 for *Itga3* and 0.02 for *Itga6*.

(B) Fragments of mammary glands from E/P-stimulated α 3KO and α 6KO and their respective control littermates stained with Carmine in whole-mounts. Bar, 400 μ m.


(C) Dot plot showing flow cytometry separation of mammary epithelial cells from E/P stimulated mammary glands. Left panels, separation of basal and luminal cells. Right: Luminal cells where plotted for ICAM1 expression, and the ICAM1+ progenitor population (green circle) selected for further analyses (see Figure 2).

(D) Dot plot showing flow cytometry separation of mammary luminal cells from E/P stimulated mammary glands on the bases of their ICAM1 and Sca-1 expression. The cell percentage of each of the four populations (Lu1 to Lu4) is indicated. A representative experiment is shown.

(E) Mammosphere formation by Lu4 cells sorted from E/P stimulated mammary glands. The values shown are means+SD obtained in 3 independent experiments. p = 0.005.

(F) RT-qPCR analysis of milk protein and integrin gene expression in freshly sorted Lu4 cells from E/P stimulated mammary glands. The values shown are means<u>+</u>SD obtained from 3 control and 3 α 3 α 6KO females. * p = 0.004 for *Wap*; 0.017 for *Csn2*; 0.006 for *Itga3*; 0.007 for *Itga6*.

(A) Western blotting analysis of phospho-FAK and FAK on protein extracts of 2-daylactating mammary glands of control and $\alpha 3\alpha 6$ KO mice. GAPDH was used as a loading control. The graph shows the means<u>+</u>SEM from 4 animals per genotype. p = 0.04.

(B) Left: Dot plot showing separation of basal (B) and luminal (L) cells from 2-daylactating mammary glands on the basis of their CD24 and ICAM1 expression. Right: Basal and luminal cells were plotted for α 6 integrin expression. Most of the luminal cells lack α 6 integrin expression in α 3 α 6KO glands.

(C) RT-qPCR analysis of *Itga3* expression in freshly isolated luminal and basal cells sorted from 2-day-lactating mammary glands as illustrated in B. The values were normalized to *Gapdh* and presented as means+SD from three independent experiments. p = 0.013.

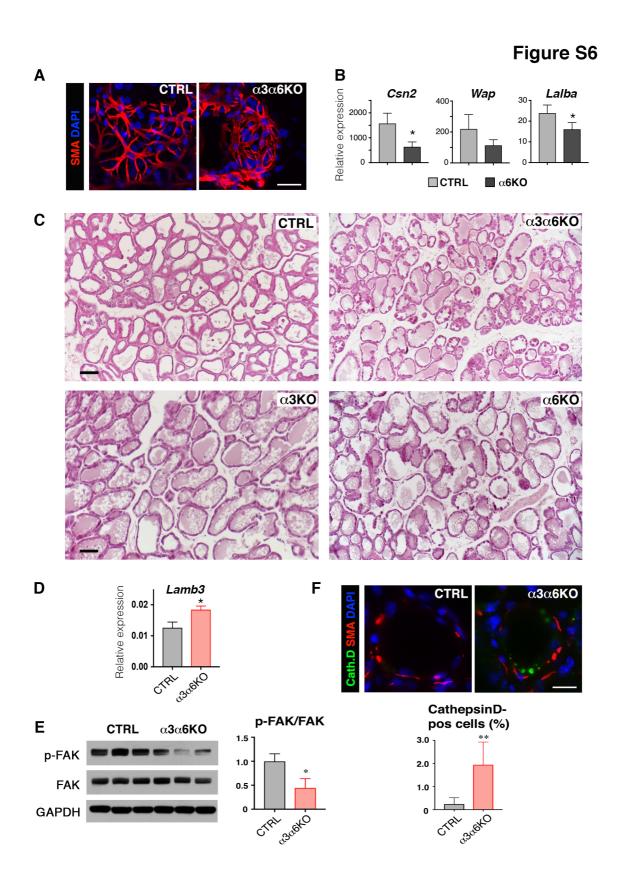
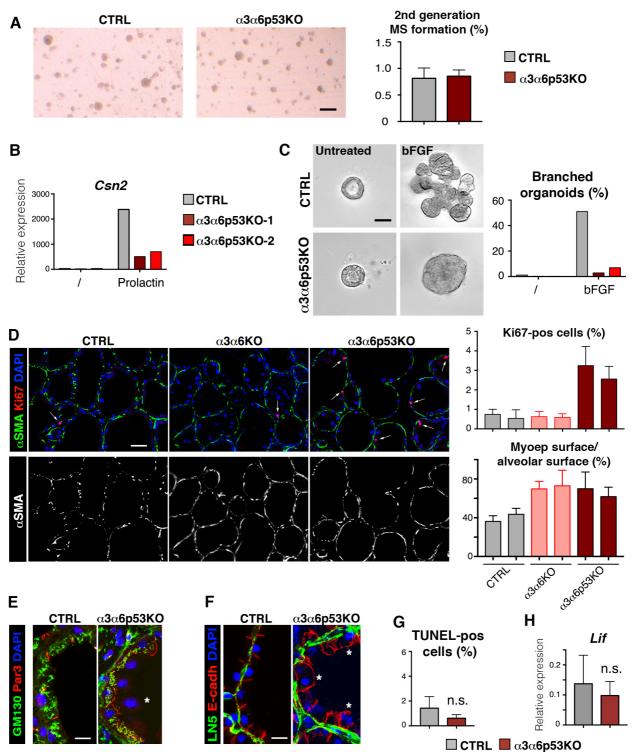


Figure S6. The deletion of LN-binding integrins from mammary luminal progenitors leads to unscheduled gland involution. Related to Figure 4.

(A) Immunofluorescence labeling of sections through 21-day-lactating mouse mammary glands with an antibody against α -SMA. DAPI served to visualize nuclei. Bar, 25 μ m.

(B) RT-qPCR analysis of milk protein gene expression in 21-day-lactating mouse mammary glands of control and α 6KO females. The graph shows means<u>+</u>SD; 4 females per genotype were analyzed; p = 0.015 for *Csn2*; 0.1 for *Wap*; 0.026 for *Lalba*.


(C) H&E-stained sections through 14-day-lactating mouse mammary glands. Bar, upper panels, 120 μ m; lower panels, 70 μ m.

(D) RT-qPCR analysis of *Lamb3* gene expression in 14-day-lactating mouse mammary glands of control and $\alpha 3\alpha 6$ KO females. The graph shows means<u>+</u>SD; 3 females per genotype were analyzed; p = 0.018.

(E) Western blotting analysis of phospho-FAK and FAK on protein extracts of 2-daylactating mammary glands of control and $\alpha 3\alpha 6$ KO mice. β -actin was used as a loading control. The graph shows the means<u>+</u>SEM from 3 animals per genotype. p = 0.02.

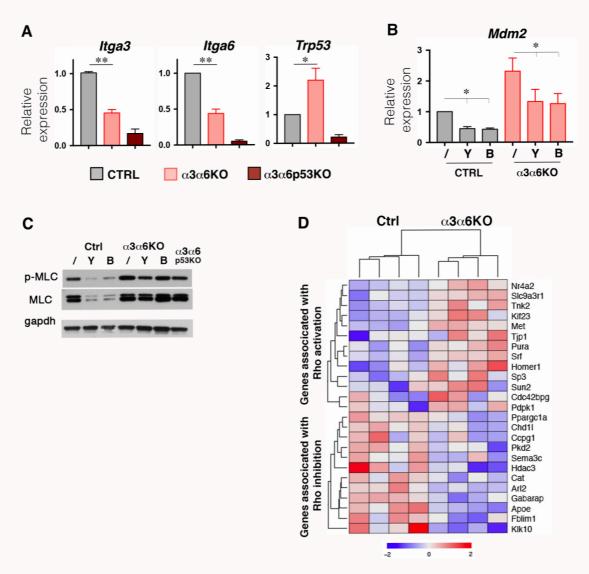
(F) Immunofluorescence labeling of sections through 21-day-lactating mouse mammary glands with antibodies against cathepsin D and α -SMA. DAPI served to visualize nuclei. Bar, 18 µm. The graph shows the means <u>+</u>SD from five microphotographs taken from two control and two α 3 α 6KO glands. p = 0.004.

Figure S7

Figure S7. Genetic p53 suppression restores growth but not differentiation in mammary luminal cells depleted of LN-binding integrins. Related to Figure 5.

(A) Mammosphere formation by luminal ICAM1+ cells sorted from E/P stimulated mammary glands. Left: representative microphotographs (bar, 400 μ m). The values shown in the graph are means<u>+</u>SD obtained in 3 separated wells of a representative experiment.

(B) RT-qPCR analysis of *Csn2* gene expression in mammary organoides cultured for 8-10 days in the presence or absence of prolactin. The values obtained from one control and two α 3 α 6p53KO 15-day-pregnant glands are shown.


(C) Mammary organoids after 5 days of culture in the presence or absence of bFGF. Left, representative contrast microscopy (DIC) images. Bar, 30 μ m. The graph represents the percentage of branched organoids (i.e., with 3 branches at least). The values obtained from one control and two α 3 α 6p53KO 15-day-pregnant glands are shown.

(D) Immunofluorescence staining of control, $\alpha 3\alpha 6$ KO and $\alpha 3\alpha 6$ p53KO mouse mammary gland sections with antibodies against Ki67 and α SMA. The upper graph shows quantification of Ki67 positive cells. The lower graph shows the percentage of the alveolar surface covered by basal SMA+ cells. Graphs show means<u>+</u>SD obtained from 6 microphotographs; 2 animals per genotype were analyzed.

(E), (F) Immunofluorescence labeling of sections through 14-day-lactating mouse mammary gland with antibodies against GM130 and Par3 (F) and antibodies against the Laminin-5 and E-cadherin. DAPI served to visualize nuclei. Asterisks mark cells with aberrant Par3 and E-cadherin localization. Bar, 15 μ m.

(G) TUNEL assay performed with the sections through 21-day-lactating mouse mammary glands from control and $\alpha 3\alpha 6p53KO$ females. The graph shows means<u>+</u>SD; 4 females per genotype were analyzed; n.s., non significant.

(H) RT-qPCR analysis of *Lif* expression in 21-day-lactating mammary glands from control and $\alpha 3\alpha 6p53KO$ females. The graph shows means<u>+</u>SD; 4 females per genotype were analyzed; n.s., non significant.

Figure S8

Figure S8. Activation of a Rho/MyosinII/p53 pathway downstream depletion of LN-binding integrins in mammary luminal progenitors. Related to Figure 6.

(A) RT-qPCR analysis of *Itga3, Itga6 and Trp53* gene expression in cells obtained from mammospheres formed by control, $\alpha 3\alpha 6$ KO and $\alpha 3\alpha 6$ p53KO luminal progenitor cells. The graph shows means±SD obtained in three independent experiments. p = 0.0001 for *Itga3*; 0.0004 for *Itga6*; 0.01 for *Trp53*.

(B) RT-qPCR analysis of *Mdm2* gene expression in cells obtained from mammospheres formed by luminal progenitor cells in the presence of Y27632 or Blebbistatin. The graph shows means±SD obtained in three independent experiments. For control mammospheres, p = 0.005 for Y27632-treated cells compared to non-treated cells, p = 0.02 for Blebbistatin-treated cells compared to non-treated cells. For $\alpha 3\alpha 6$ KO mammospheres, p = 0.015 for Y27632-treated cells compared to non-treated cells, p = 0.009 for Blebbistatin-treated cells compared to non-treated cells.

(C) Western blotting analysis Phospho-MLC and MLC- protein levels in extracts of mammosphere formed by control, $\alpha 3\alpha 6$ KO and $\alpha 3\alpha 6$ p53KO luminal cells. GAPDH was used as a loading control. A representative experiment is shown.

(D) Heatmap based on Affymetrix analysis of freshly sorted luminal cells from 15-daypregnant mammary glands from control and $\alpha 3\alpha 6$ KO females.

In (A) and (B), values obtained for control cells were set as 1 in each experiment. Through the whole figure: Y, Y27632, B, Blebbistatin. Table S1: REACTOME pathway analysis on genes differentially expressed in $\alpha 3\alpha 6$ KO luminal cells compared to Ctrl luminal cells (p15-pregnant mice). Related to Figure 3.

Pathway Description (REACTOME)	Nb Genes in Pathway	Nb Regulated Genes (Up / Down)	P-Value (Up)	P-Value (Down)
Bmal1 : Clock, NPas2 activates circadian gene expression	21	4 (0/4)	NA	1,09E-03
Rora activates gene expression	11	3 (0/3)	NA	5,02E-03
RHO GTPases Activate Formins	111	8 (6/2)	1,15E-02	NA
SUMOylation of transcription factors	11	3 (2/1)	NA	NA
Nr1d1 (Rev-erba) represses gene expression	3	2 (0/2)	NA	2,94E-02
Transcriptional activation of mitochondrial biogenesis	14	3 (2/1)	NA	NA
Iron uptake and transport	15	3 (1/2)	NA	NA

Table S2: Antibodies used for FACs analysi	s of integrin expression
--	--------------------------

Antibody	Isotype	Company, Reference	Clone
ITGα1 (CD49a)	Armenian hamster IgG	Biolegend, 142603	ΗΜα1
ITGα2 (CD49b)	Armenian hamster IgG	Biolegend, 103506	ΗΜα2
ITGα3 (CD49c)	Goat polyclonal IgG	R&D Systems, AF2787	
ITGα5 (CD49e)	Rat IgG2a,k	Biolegend, 103805	5H10-27 (MFR5)
ITGα6 (CD49f)	Rat IgG2a,k	Biolegend, 313622	GoH3
ITGαV (CD51)	Rat IgG1,k	Biolegend, 104105	RMV-7
ITGβ1 (CD29)	Armenian hamster IgG	Biolegend, 102221	ΗΜβ1-1
ITGβ3 (CD61)	Armenian hamster IgG	Biolegend, 104307	2C9.G2 (ΗMβ3-1)
ITGβ4 (CD104)	Rat IgG2a,k	Biolegend, 123609	346-11A

Table S3: Primers used for RT-qPCR analysis

Cdkn1a-s	5' – TTCCGCACAGGAGCAAAGTG - 3'
Cdkn1a-as	5' - CCGTGACGAAGTCAAAGTTC - 3'
Csn2-s	5' - CCTCTGAGACTGATAGTATTT - 3'
Csn2-as	5' - TGGATGCTGGAGTGAACTTTA - 3'
Elf5-s	5' - CCAACGCATCCTTCTGTGAC - 3'
Elf5-as	5' - AGGCAGGGTAGTAGTCTTCA - 3'
Gapdh-s	5' - CCAATGTGTCCGTCGTGGATC - 3'
Gapdh -as	5' - GTTGAAGTCGCAGGAGACAAC - 3'
Itga3-s	5' - CACGCACATCATCACTGTTG - 3'
Itga3-as	5' - CTGCCACCCATCATTGTTCA - 3'
Lalba-s	5' - GACAACGGCAGCACAGAGTA - 3'
Lalba-as	5' - GCCACAGATGTTCTCCGAC - 3'
Mdm2-s	5' – CGCAAAACGACACTTACACTA - 3'
Mdm2-as	5' - GCTCCTTCACAGAGAAACTC - 3'
Wap-s	5' - TTGAGGGCACAGAGTGTATC- 3'
Wap-as	5' - TTTGCGGGTCCTACCACAG- 3'

Other primers were purchased from SABiosciences/Qiagen.