Table S1: categories of gene expression pattern within the developing digit.

Type	Gene	Early expression	Perturbation
Stripes	Gdf5	(Merino et al., 1999; Storm \& Kingsley, 1999; Gao et al., 2009; Ray et al., 2015; Huang et al., 2016)	- Gdf5 beads embedded adjacent to nascent joints inhibits joint formation in chick (Merino et al., 1999) and mouse (Storm and Kingsley, 1999) - Gdf5(---) mice show ectopic joint initiation (Storm and Kingsley, 1999)
	Wnt9a	(Kan \& Tabin, 2013; Sohaskey et al., 2008)	- Retroviral mis-expression of Wnt9a in chick induces ectopic joint formation and downregulates chondrogenesis (Hartmann \& Tabin, 2001)
	Wnt16	(Kan \& Tabin, 2013)	- WNT/B-catenin signalling is necessary and sufficient to form joints (Guo et al., 2004)
	PthrP	(Gao et al., 2009)	
	Chordin	(Kan \& Tabin, 2013)	
	cJun	(Kan \& Tabin, 2013)	- Cre mediated deletion of cJun from early mouse limb mesenchyme disrupts interzone formation and Wnt9a/Wnt16 interzone expression (Kan and Tabin, 2013)
Dots	pSMAD1/5/8	(Huang et al., 2016)	- Activation of the BMP pathway inhibits joint formation (Brunet et al., 1998; Zou et al., 1997) - Inhibition of the BMP pathway expands joint progenitors (Yi et al. 2008) - In chick, interdigital sources of BMP, both endogeneously present and exogeneously applied, affect joint patterning in nearby digits (Dahn and Fallon, 2000; Suzuki et al., 2008)
	Ihh	(Gao et al., 2009)	- Loss of joints in Ihh(--) mice (Hilton et al. 2005) - Partial rescue of joints in Ihh(--); Gli3 (---) double mutant mice - Mouse Ihh E95K mutation, reducing capacity and range of hedgehog signalling, leads to loss of middle phalanx from digit V , and spreading of Gdf5 expression (Gao et al., 2009)
	Ppr	(Gao et al., 2009)	
Holes	Hip1	(Gao et al., 2009)	
	Gli1	(Gao et al., 2009)	

Table S2: Summary of model variables and parameters

Category	Type	Description
Dot system	A	Concentration of dot molecule
	S	Concentration of hole molecule
	D_{A}	Diffusivity of A
	D_{S}	Diffusivity of S
	k_{A}	Controls degradation and production of A
	k_{S}	Controls degradation and production of S
	h_{A}	Concentration-independent production of A
	h_{S}	Concentration-independent production of S
	$k_{\text {deg }}$	Degradation rate of A outside domain
Stripe system	B	Concentration of activating stripe molecule
	I	Concentration of inhibitory stripe molecule
	D_{B}	Diffusivity of B
	D_{I}	Diffusivity of I
	h_{B}	Controls production of B that is independent of I
	k_{B}^{0}	Controls degradation and production of B
	k_{I}	Controls degradation and production of I
	κ_{B}^{0}	Controls the inhibitory effect of A and B on the production of B
Geometry	L_{0}	Initial digit length
	L	Final digit length
	W	Digit width
	ϵ	Semi-minor axis (half-width) of ellipses at digit ends
	T	Total simulation time
	T_{i}	Time to allow patterns to settle without growth
	L_{P}	Length of patterning region

Table S3: Simulation parameters

Unless otherwise stated, we kept the following parameters constant across all simulations:
$k_{A}=0.0025, k_{S}=0.003, k_{B}^{0}=0.01875, k_{I}=0.0375 h_{A}=0.00025, h_{S}=0.003, h_{B}=$ $0.00187, \kappa_{B}^{0}=0.2, k_{\text {deg }}=1 \times 10^{-5}, \epsilon=3, T_{i}=5 e 3, \delta t=20$

Figure	$\boldsymbol{D}_{\boldsymbol{A}}$	D_{S}	$\boldsymbol{D}_{\boldsymbol{B}}$	D_{I}	L_{0}	L	W	T	other
1C,D	0.008	0.16	0.006	0.12	128	128	128	12 e 4	$k_{B}=k_{B}^{0} S_{0}^{2}, \kappa_{B}=\kappa_{B}^{0} A_{0}, \epsilon=0, T_{i}=0$
1F	0.008	0.16	0.006	0.12	128	128	20	6e4	-
2B	0.0007	0.0135	0.0004	0.0076	5	36	6	12 e 4	-
2C	0.002	0.039	0.0011	0.0219	5	40	10	12 e 4	$L_{P}=\infty, 12,2$
2D	0.0018	0.036	0.001	0.0203	5	115	10	24e4	$T_{i}=2 e 4$
3A (left)	0.004	0.08	-	-	128	128	128	12 e 4	-
3A (middle)	0.008	0.16	-	-	128	128	128	12 e 4	-
3A(right)	0.016	0.32	-	-	128	128	128	12 e 4	-
3B (upper)	0.0015	0.03	0.0008	0.0169	10	34	10	6 e 4	$T_{i}=1 e 3$
3B (middle)	0.001	0.02	0.0008	0.0169	10	34	10	6 e 4	$T_{i}=1 e 3$
3B (lower)	0.0004	0.0075	0.0008	0.0169	10	34	10	6 e 4	$T_{i}=1 e 3, k_{\text {deg }}=6 \times 10^{-5}$
4B (left)	0.002	0.039	0.0015	0.0292	50	50	50	20 e 4	$T_{i}=2 e 4, \epsilon=3$
4B (middle)	0.002	0.039	0.0015	0.0292	10	50	50	20e4	$T_{i}=2 e 4, \epsilon=3, k_{\text {deg }}=1 \times 10^{-6}$
4B (right)	0.002	0.039	0.0015	0.0292	10	50	50	20e4	$T_{i}=2 e 4, \epsilon=3$
5A (left)	-	-	0.00112	0.2250	40	40	10	6 e 4	$k_{B}=0.0128, \kappa_{B}=0.22, \epsilon=0$
5A (middle)	-	-	0.0079	0.1575	40	40	10	6 e 4	$k_{B}=0.0128, \kappa_{B}=0.22, \epsilon=0$
5A (right)	-	-	0.0056	0.1125	40	40	40	6 e 4	$k_{B}=0.0128, \kappa_{B}=0.22, \epsilon=0$
5B (left)	0.0018	0.036	-	-	40	40	10	12 e 4	$T_{i}=1 e 3, \epsilon=0$
5B (middle)	0.0012	0.024	-	-	40	40	10	12e4	$T_{i}=1 e 3, \epsilon=0$
5B (right)	0.0027	0.054	-	-	40	40	40	12 e 4	$T_{i}=1 e 3, \epsilon=0$
5C (left)	0.0018	0.036	0.001	0.0203	40	40	10	12 e 4	$T_{i}=1 e 3, \epsilon=0$
5C (middle)	0.0012	0.024	0.001	0.0203	40	40	10	12e4	$T_{i}=1 e 3, \epsilon=0$
5C (right)	0.0027	0.054	0.0015	0.0304	40	40	40	12 e 4	$T_{i}=1 e 3, \epsilon=0$
S1C	0.0008	0.16	0.006	0.12	128	128	20	6 e 4	$k_{\text {deg }}=0,1 \times 10^{-5}, 1 \times 10^{-4}$
S1D	0.0008	0.16	0.006	0.12	128	128	20	6 e 4	$S A^{2} \rightarrow S A^{2}\left(1+0.1 B^{2}\right)^{-1}$ in Equation 1a,b; 4a, b
S2A	0.002	0.039	0.0011	0.0219	5	50	10	->	$T=12 e 4,3.5 e 4,1 e 4$ from left to right
S2B	0.0024	0.048	0.0018	0.036	5	50	10	20e4	$h_{A}^{D C}=0,0.0004,0.0006, h_{B}^{D C}=0.005$

A
dot-forming Turing system

B stripe-forming Turing system

C

D

Figure S1

(A) In the dot-forming system, dots (red) form in antiphase with holes (green).
(B) In the stripe-forming system, stripes (blue) form in-phase with other stripes (orange).
(C) Varying the degradation rate of A outside the domain $\left(k_{d e g}\right)$ changes joint orientation. An intermediate value is required to get stereotypical joint morphology. (D) A more general model, involving mutual repression between the dot- and stripesystems, generates patterns that are qualitatively similar to the simpler model in Fig. 1.
(E,F) Schematic of parameters describing digit geometry and growth.

A

Patterning speed:

fast

medium

slow

B

Strength of boundary signals:

Figure $\mathbf{S 2}$
(A) Changing the speed of patterning modulates the precise location of newly forming joints. Left: fast patterning results in joints that divide the distal phalanx (arrowhead). Middle: slower patterning results in joint specification at the growing tip (asterisk). Right: if patterning is too slow, the system fails to self-organize.
(B) Modelling boundary effects can affect the precise location of newly forming joints. Left and Right: Both weak and strong boundary effects can cause joints to divide existing phalanges (arrowhead). Middle: intermediate boundary effects bias joints to form near the distal tip (asterisk).

A

close to dot centre

B

C

comparison

Figure S3
(A) Simulating the stripe system for uniform values of A and S, chosen to mimic being at different distances from a dot-centre in Fig. 4A.
(B) Simulating the stripe system for a one-dimensional gradient in the values of A and S, again chosen to mimic being at different distances from a dot-centre in Fig. 4A.
(C) Direct comparison of simulated joint patterns with the voronoi tessellation of Fig.

4 A .

only h depends on dots

C

both h and a depend on dots

Figure S4

(A) Simulation of the generic dot-stripe system (Equations 7-8) with h-coupling only generates holes.
(B) Simulation of the generic dot-stripe system (Equations 7-8) with a-coupling only generates misoriented stripes.
(C) Simulation of the generic dot-stripe system (Equations 7-8) with both h - and a coupling generates a polygonal lattice of joints.

