

Fig. S1. Cre recombinase activity in the hindlimb-forming LPM in the RetRV5Cre transgenic deleter line. LacZ staining of Cre expressing cells at E9.75 $(\mathrm{n}=8) . \quad(\mathbf{A}, \mathbf{C})$ right-side lateral views of whole embryos. (B,D) Transverse cryosections through the hindlimb regions of embryos. A, E9.5 Rosa26RlacZ;RetRV5Cre embryo. LacZ activity is detected in the nascent hindlimb bud. B, Transverse cryosection through the hindlimb region of an E9.5 Rosa26RlacZ;RetRV5Cre embryo. LacZ activity is additionally present in the hindgut diverticulum (black arrowhead) and anterior to the vitelline artery (black asterisk). C, E10.5 Rosa26RlacZ;RetRV5Cre embryo, LacZ activity is detectable throughout the hindlimb buds. \mathbf{D}, Transverse cryosection through the hindlimbs of an E10.5 Rosa26RlacZ;RetRV5Cre embryo, in which LacZ activity is not detectable in the ectoderm. LacZ activity is visible in the mesoderm of the hindgut (black arrowhead) and the dorsal mesentery (black asterisk). NT-Neural tube, S-somite, PSM-presomitic mesoderm, HL-hindlimb E, Graphical representation of Q-PCR results to analyse the extent of deletion of the Tbx4 conditional allele in 2 separate E10.5 Tbx4 lox/lox;RetRV5Cre hindlimbs . An estimated 96% of conditional Tbx4 allele has been excised in Tbx $4^{l o x / l o x}$;RetRV5Cre mutant hindlimbs.

Fig. S2. Fgf10 expression is regulated by dual inputs from Tbx4 and Pitx1. Whole mount in situ hybridisation showing Fgf10 expression in E10.25 hindlimbs of A, control (n=8), B, Tbx4 ${ }^{\text {lox/lox. }} ; \operatorname{RetRV5Cre}(\mathrm{n}=3)$ C, Pitx| $I^{-/-} ;$Tbx4 $4^{\text {lox/lox }} ;$ RetRV5Cre $(\mathrm{n}=2)$ D,E Pitx1

Suppl. Figure3

Fig. S3. The $\boldsymbol{Z} / E G F g f 10$ transgene is able to fully rescue hindlimb outgrowth in $\mathbf{F g f 1 0} 0^{-/}$ embryos when activated by the RetRV5Cre line. A, Cre recombinase recombines the LoxP flanked cassette to enable transgenic Fgfl0 transcription in the Z/EGFgfl0 construct. The Z/ EGFgfl0 construct was produced using the $Z / E G$ transgenic backbone (Novak et al. 2000) and contains a β-Geo cassette, flanked by two LoxP sites (black triangles) downstream of the chick β-actin promoter (light grey rectangle) and the CMV enhancer (white rectangle). The β Geo cassette contains $\operatorname{Lac} Z$ sequence (blue rectangle) and a neomycin resistance gene (neo), as well as a 3 x polyadenylation sites (dark grey) that serve as a transcriptional stop signal. Located 3' of the β-Geo cassette is the Fgfl0 cDNA (yellow rectangle) and an internal ribosome entry site (IRES, black rectangle), eGFP (green rectangle) and β-globin polyadenylation signal (dark grey rectangle). In the absence of Cre recombinase, CAGGS drives transcription of β-Geo. Following cre excision, the β-Geo cassette is removed and the Fgflo/IRES/eGFP cassette comes under the control of the CAGGS promoter. B,D,F, E17.5 embryos and C,E,G, complementary skeletal preparation of \mathbf{B}, \mathbf{C} control (n=1), D,E Fgflo $(\mathrm{n}=1)$ and \mathbf{F}, \mathbf{G} Fgfl $10^{-} ;$RetRV5Cre;Z/EGFgf10 rescued embryos ($\mathrm{n}=2$). Hindlimb formation is completely rescued in the $\mathrm{Fg} f 10$ mutant by activation of the $\mathrm{Fg} f 10$ transgene.

Fig. S4. Meis1, Hoxa11 and Hoxa13 are expressed in Tbx4 mutant hindlimb buds. A-F Whole mount in situ hybridisation of E10.5 hindlimb buds. Dorsal views. Expression of the proximal segment (stylopod) marker Meis1 ($\mathrm{n}=3$) (A) is expressed in the Tbx4 ${ }^{\text {lox/ }}$ ${ }^{\text {lox }}$;RetRV5Cre mutant ($\mathrm{n}=3$) (B). Medial segment (zeugopod) marker Hoxall ($\mathrm{n}=3$) (C) is expressed in the Tbx4 mutant (n=2) (D). At E10.5 Hoxa11 is expressed both medially and distally. Distal segment (autopod) marker Hoxa13 (n=3)(E) is expressed in the Tbx4 mutant (n=3) (F). Shox2 is downregulated in the Tbx4 mutant at E10.5 Whole mount in situ hybridisation of E10.5 control $(\mathrm{n}=4)(\mathbf{G})$ and Tbx4 $4^{\text {lox/lox }}$;RetRV5Cre mutant $(\mathrm{n}=3)(\mathbf{H})$. Robust expression in control (solid arrow) contrasts with reduced expression in the Tbx4 conditional mutant (hollow arrow). Shox2 expression is restricted to the proximal limb bud at E11.5 in control ($\mathrm{n}=3$) (I) and Tbx4 $4^{\text {lox/lox }} ; \operatorname{RetRV5Cre}$ mutant $(\mathrm{n}=2)(\mathbf{G})$.

Fig. S5. Cell death is not responsible for the decreased number of chondroprogenitors detected over time. A,B Alcian Blue staining of cartilage nodule formation after 7 days of culture in micromass cultures established from distal cells of (A) Wild type hindlimbs (n=6), (B) Tbx4lox/lox;RetRV5Cre hindlimbs (n=6). C,D Extended focus confocal stacks of immunostained proximal micromass culture after 3 days culture. Anti-Caspase (green), anti-Sox9 (red), phospho-histone H3 (white) and nuclear staining
 Histogram showing mean \pm s.e.m. volume in $\mu \mathrm{m}^{3}$ of Caspase 3 staining measured in a stack at 20x magnification of control (blue) and Tbx4 ${ }^{\text {lox/lox. }}$; 2 etRV5Cre (red) proximal micromass after 3 and 4 days of culture. No statistical difference is observed between the two conditions after Student t-test $(\mathrm{P}>0.05) ; \mathrm{n}=5$. Standard errors are shown.

Movie 1. Time lapse movie of a control micromass culture stained with Cell Tracker dye.
xyz views of Z-scan stacks imaged every 5 minutes during an 84hr culture. 20X magnification.

Movie 2. Time lapse movie of a Tbx $4^{l o x / l o x} ;$ RetRV5Cre micromass culture stained with Cell
Tracker dye. xyz views of Z-scan stacks imaged every 5 minutes during an 84hr culture. 20X magnification.

