

Fig. S1. Analysis of failed β -catenin recombination in β -cat^{del ex3-6} mice.

- (A) β -cat^{fl/fl ex3-6} allele before and after recombination. LoxP sites (red arrows) flank exons 3-6, which encode the N-terminal domain and armadillo repeats 1-4. Grey boxes indicate armadillo repeats. Blue box indicates the sequence recognised by the TaqMan probe used for qPCR analysis in (C).
- (**B**) Two-month-old Control and β-cat^{del ex3-6} mice were injected with tamoxifen once daily for 5 consecutive days to induce recombination of the β -cat^{fl/fl ex3-6} allele. Ten days after the first tamoxifen injection, the DG of individual mice were dissected and YFP+ cells were collected by flow cytometry for RNA extraction and qPCR analysis.
- (C) β -cat ex4-5 (blue box, **A**) expression is not significantly different between YFP+ cells collected by flow cytometry from the DG of Control and β -cat^{del ex3-6} mice indicating failed recombination. n=3. Statistics: unpaired two-tailed Student's t-test. (ns, p>0.05). Error bars represent mean with SEM.

Fig. S2. Analysis of successful β -catenin recombination in β -cat^{del ex2-6} mice and resulting inhibition of Wnt/ β -catenin signalling in β -cat^{del ex2-6} mice.

- (A) β -cat^{fl/fl ex2-6} allele before and after recombination.
- (B) Two-month-old Control and β -cat^{del ex3-6} mice were injected with tamoxifen once daily for 5 consecutive days. Ten days after the first tamoxifen injection, the DG of individual mice were dissected and YFP+ cells were collected by flow cytometry for RNA extraction and qPCR analysis.
- (C) β -cat e^{x^4-5} (blue box, **D**) expression is significantly decreased in β -cat e^{x^2-6} YFP+ cells compared with Control YFP+ cells indicating successful β -cat e^{x^2-6} recombination. n=3.
- (**D**) Comparison of β -catenin immunolabelling in the DG and SVZ of a wild type two-month-old mouse. β -catenin immunolabelling marks the cellular membrane and is stronger in the SVZ compared with the DG. Scale bar, $50\mu m$.
- (E) Two-month-old Control and β -cat^{del ex2-6} mice were administered tamoxifen for 5 consecutive days and sacrificed 30 days after the first tamoxifen injection.
- (**F**) β -catenin, YFP, GFAP and Sox2 immunolabelling in the DG of Control and β -cat^{del ex2-6} mice. Arrows in control indicate YFP-positive, β -catenin-positive NSCs. Arrowheads in β -cat^{del ex2-6} mice indicate recombined YFP-positive, β -catenin-negative NSCs whereas the double arrowhead indicates an un-recombined YFP-negative, β -catenin-positive NSC. Scale bar, 50 μ m.
- (G) Axin2 expression is unchanged in β -cat^{del ex2-6} YFP+ cells compared with Control YFP+ cells following FAC Sorting of YFP-positive cells in control and β -cat^{del ex3-6} mice as described in (B). n=3.
- (H) Two-month-old Control and β -cat^{del ex2-6} mice, crossed with BATGAL Wnt/ β -catenin reporter mice, were administered tamoxifen for 5 consecutive days and sacrificed 30 days after the first tamoxifen injection.
- (I) BATGAL (β -galactosidase), GFAP and Sox2 immunolabelling in the DG of Control and β -cat^{del} ex2-6 mice crossed with *BATGAL* mice. Arrowheads indicate BATGAL- NSCs and double arrowheads indicate BATGAL+ NSCs. Scale bar, 50 μ m.
- (**J**) Quantification of the proportion of BATGAL+ NSCs in (**H**). The decreased proportion of BATGAL+ NSCs in β -cat^{del ex2-6} mice (13.33 \pm 5.69%, n=3) compared with Control (31.5 \pm 3.88%, n=4) indicates successful inhibition of Wnt/ β -catenin signalling following recombination of the β -cat^{fl/fl ex2-6} allele.

Statistics: unpaired two-tailed Student's t-test (\mathbf{C} , \mathbf{G} and \mathbf{J}). (ns, p>0.05. *, p<0.05. ***, p<0.001). Error bars represent mean with SEM.

Fig. S3. NSCs and adult hippocampal neurogenesis are unaffected by the long-term deletion of β -catenin and inhibition of Wnt/ β -catenin signalling in NSCs.

- (A) Two-month-old Control and β -cat^{del ex2-6} mice were administered tamoxifen for 5 consecutive days and sacrificed 90 days after the first tamoxifen injection.
- (B) Quantifications of the total number of NSCs (YFP+ GFAP+ Sox2+ radial cells in the SGZ) normalised to the length of the SGZ (mm) in Control (6.85 \pm 1.00) and β -cat^{del ex2-6} (8.69 \pm 2.27) mice 90 days after tamoxifen administration. n=3
- (C) YFP and DCX immunolabelling in the DG of Control and β -cat^{del ex2-6} mice 90 days after tamoxifen administration. Scale bars, 50 μ m.
- (**D**) Quantifications of the data shown in (**C**). The total number of neuroblasts (NBs, DCX+ YFP+ cells) normalised to the SGZ length (mm) are unchanged between Control (8.17 \pm 1.12) and β -cat^{del} ex2-6 mice (10.72 \pm 1.43), indicating that NBs are unaffected by long-term β -catenin deletion. n=3.
- (E) YFP, Prox1 and NeuN immunolabelling in the DG of Control and β -cat^{del ex2-6} mice 90 days after tamoxifen administration. Scale bars, 50 μ m.
- (**F**, **G**) Quantifications of the data shown in (**C**). The total number of YFP+ Prox1+ cells normalised to the SGZ length (mm) (Control vs β -cat^{del ex2-6}: 7.38 ± 2.8 vs 11.3 ± 3.54 , **F**) and the total number of YFP+ NeuN+ cells normalised to the SGZ length (mm) (Control vs β -cat^{del ex2-6}: 4.89 ± 3.02 vs 8.45 ± 3.5 , **G**) are unchanged between Control and β -cat^{del ex2-6} mice indicating that neurogenesis is unaffected by long-term β -catenin deletion. n=3.

Statistics: unpaired two-tailed Student's t-test (**B**, **D**, **F**, **G**). (ns, p>0.05). Error bars represent mean with SEM.

Fig. S4. Stabilising β -catenin in NSCs in vivo displaces them from their correct niche location.

- (A) Two-month-old Control and Cathb^{del(ex3)} mice were administered tamoxifen for 5 consecutive days and sacrificed 10 and 30 days after the first tamoxifen injection.
- (**B**) β-catenin immunolabelling in the DG of Control and Catnb^{del(ex3)} mice 10 days after tamoxifen. Increased β-catenin staining in Catnb^{del(ex3)} mice indicates successful recombination. Dashed lines mark the SGZ. Scale bars, 50μm.
- (C) BATGAL (β-galactosidase), GFAP and Sox2 immunolabelling in the DG of Control and Catnb^{del(ex3)} mice crossed with BATGAL mice, 10 days after tamoxifen. Arrowheads indicate BATGAL- NSCs and double arrowheads indicate BATGAL+ NSCs. Scale bar, 50μm.
- (**D**) Quantification of the proportion of BATGAL+ NSCs in (**C**). The proportion of BATGAL+ NSCs is unchanged between Control ($25 \pm 5.51\%$) and Catnb^{del(ex3)} ($30.67 \pm 0.33\%$) 10 days after tamoxifen, which corresponds to the proportion of NSCs expressing β -catenin by RNA sequencing (32% quiescent NSCs. n=3.
- (**E**) Quantification of the data shown in (**C**) of the intensity of BATGAL staining in BATGAL+ NSCs normalised to the BATGAL intensity in neighbouring DAPI+ GCL cells. BATGAL reporter intensity is increased in BATGAL+ NSCs in *Catnb*^{del(ex3)} mice (p<0.0001). A.U.= Arbitrary Units. n=3
- (**F**) YFP, GFAP, Sox2 and Ki67 immunolabelling in the DG of Control and Catnb^{del(ex3)} mice 30 days after tamoxifen administration. Scale bars, 50μm.
- (**G, H**) Quantifications of the data shown in (**F**) of the total number of NSCs normalised to SGZ length (mm) (Control vs Catnb^{del(ex3)}: 30.95 ± 0.86 vs 16.65 ± 1.26 , **G**) and the proportion of Ki67+ NSCs (Control vs Catnb^{del(ex3)}: $1.33 \pm 0.33\%$ vs $3.8 \pm 0.58\%$, **H**). NSCs are lost from the DG 30 after stabilising β -catenin and their proliferation is increased. n=3 for Control, n=5 for Catnb^{del(ex3)}.
- (I) YFP, GFAP, Sox2 and Ki67 immunolabelling in the DG of Control and Catnb^{del(ex3)} mice 10 days after tamoxifen administration. Scale bars, 50μm.
- (**J, K**) Quantifications of the data shown in (**I**) of the total number of NSCs normalised to the length of the SGZ (mm) (Control vs Catnb^{del(ex3)}: 32.38 ± 4.83 vs 28.92 ± 4.72 , **J**) and the proportion of Ki67+ NSCs (Control vs Catnb^{del(ex3)}: $4.33 \pm 1.45\%$ vs $7 \pm 1.73\%$, **K**). Neither the total number of NSCs nor their proliferation are affected 10 days after stabilising β -catenin. n=3.

p<0.05. ***, p<0.001). Error bars represent mean with SEM.

- (L) Representative images of SGZ located (arrowheads) and displaced (arrows) NSCs (YFP+GFAP+Sox2+NSCs) in the DG of Control and Catnbdel(ex3) mice 10 days after tamoxifen administration. Dashed lines mark the SGZ. Scale bars, 50µm.
- (M, N) Quantifications of the data shown in (L). SGZ located NSCs (arrowheads) retain their correct niche location with their cell body located in the SGZ and a radial process through the GCL. Displaced NSCs in Catnbdel(ex3) mice (arrows) were identified as YFP+ GFAP+ Sox2+ NSCs that are located more than 2 cell nuclei away from the SGZ. The total number of displaced NSCs normalised to the SGZ length (mm) (Control vs Catnbdel(ex3): 1.42 ± 0.32 vs 4.59 ± 2.89 , M) and the proportion of displaced NSCs (Control vs Catnbdel(ex3): $4 \pm 0.58\%$ vs $12.67 \pm 6.57\%$, N). Displacement of NSCs is increased in Catnbdel(ex3) mice compared with Control. n=3. SGZ, subgranular zone. GCL, granule cell layer. ML, molecular layer. Statistics: unpaired two-tailed Student's t-test (D, E, G, H, J, K, M and N). (ns, p>0.05. *,

Fig. S5. Validation of β -catenin recombination and deletion in β -catellex ex3-6 NSCs.

- (**A**) qPCR gene expression analysis of β -cat e^{x4-5} (blue box, Figure S1**A**) 24hrs, 48hrs and 72hrs after control- and Cre-adenovirus transduction in Control and β -cat e^{x3-6} active NSCs. β -cat e^{x4-5} lies within the floxed region of the β -cat e^{x3-6} allele and is downregulated in active β -cat e^{x3-6} NSCs vs Control (p<0.0001 for all time points). n=3.
- (**B**) Western blot of β -catenin protein levels in wild type (WT, no virus), Control (control-adenovirus) and β -cat^{del ex3-6} (Cre-adenovirus) active NSCs 24hrs, 48hrs and 72hrs after adenovirus transduction. β -catenin protein levels are abolished 48hrs after adenovirus transduction. n=3.
- (C) β-cat^{del ex3-6} active NSCs fail to upregulate *Axin2* in response to 5μM CHIR99021 treatment, indicating their inability to respond to a Wnt/β-catenin stimulus. CHIR99021 treatment began 48hrs after adenovirus transduction and maintained for 48hrs. n=3.

Statistics: Two-way ANOVA with Sidak's multiple comparisons test (**A**, **C**). (ns, p>0.05. ***, p<0.001). Error bars represent mean with SEM.

Fig. S6. Chronic loss of Wnt/ β -catenin signalling does not impair neuronal or astrocytic differentiation *in vitro*.

- (A) Six-, 12- and 18-days after virus transduction Control and β -cat^{fl/fl ex3-6} NSCs were cultured for 5 days in conditions to promote neuronal (+B27) and astrocytic (+FBS) differentiation.
- (B) YFP, Map2 and DAPI immunolabelling in Control and β -cat^{del ex3-6} NSCs cultured in B27 for 5 days at 6-, 12- and 18-days after virus transduction. YFP labels recombined cells and Map2 labels differentiated neurons. Scale bars, 50 μ m.
- (C) Quantification of the proportion of Map2+ neurons in (B) (Control vs β -cat^{del ex3-6}: 6days = 53 \pm 3.61% vs 58.67 \pm 6.96%, 12days = 44 \pm 6.66% vs 57.33 \pm 3.93%, 18days = 46 \pm 5.69% vs 48.33 \pm 3.53%). Control and β -cat^{del ex3-6} NSCs are similarly able to differentiate into neurons. Data shown are technical replicates of n=1 with an average of 147 cells counted per sample.
- (**D**) YFP, GFAP and DAPI immunolabelling in Control and β-cat^{del ex3-6} NSCs cultured in FBS for 5 days following 6-, 12- and 18-days after virus transduction. YFP labels recombined cells and GFAP labels differentiated astrocytes. Scale bars, 50μm.
- (E) Quantification of the proportion of GFAP+ astrocytes in (D) (Control vs β -cat^{del ex3-6}: 6days = $63.33 \pm 3.18\%$ vs $65 \pm 4.16\%$, 12days = $54.67 \pm 5.18\%$ vs $57 \pm 7.21\%$, 18days = $52.33 \pm 0.67\%$ vs $63.33 \pm 7.79\%$). Astrocytic differentiation is unaffected by loss of β -catenin. Data shown are technical replicates of n=1 with an average of 85 cells counted per sample.

Error bars represent mean with SEM.

Fig. S7. Quiescent NSC activation is sustained by prolonged Wnt/β-catenin stimulation.

- (A) Upregulation of Axin2 is sustained by $5\mu M$ CHIR99021 treatment of quiescent NSCs for 24hrs, 48hrs and 72hrs. n=2.
- (**B**) Immunolabelling of the proliferation marker Ki67 and DAPI in quiescent NSCs treated with $5\mu M$ CHIR99021 for 24hrs, 48hrs and 72hrs. Scale bars, $50\mu m$.
- (C) Quantification of the proportion of Ki67+ cells in (B). Proliferation increases with longer $5\mu M$ CHIR99021 treatments of quiescent NSCs (Control vs $5\mu M$ CHIR99021: 24hrs, 4.33 ± 0.67 vs 8.33 ± 0.67 . 48hrs, 4 ± 1.16 vs 16 ± 3.06 . 72hrs, 5.33 ± 0.33 vs 20.67 ± 3.67). n=3.
- (**D**) Tuj1 expression is not significantly upregulated by $5\mu M$ CHIR99021 treatments of quiescent NSCs over time. n=3.

Statistics: Two-way ANOVA with Sidak's multiple comparisons test ($\bf A$, $\bf C$ and $\bf D$). (ns, p<0.05. **, p<0.01. ***, p<0.001). Error bars represent mean with SEM.

Fig. S8. Details of replicates comprising the data shown in Fig. 7E-I

- (A) Quiescent β -cat^{fl/fl ex3-6} NSCs were transduced with Control or Cre-adenovirus. Control and β -cat^{del} ex3-6 NSCs were then treated with either vehicle control or 5μ M CHIR99021 for 48hrs before samples were collected for immunofluorescence analysis of proliferation markers.
- (**B**) Quantification of the proportion of Ki67+ cells and the proportion of EdU+ cells in replicate 1 of the protocol detailed in (**A**).
- (C) Quiescence was induced in control and β -cat^{del ex3-6} NSCs 48hrs after transducing active β -cat^{fl/fl} ex3-6 NSCs with Control or Cre-adenovirus. After 72hrs of quiescence induction, Control and β -cat^{del ex3-6} NSCs were treated with either vehicle control or 5 μ M CHIR99021 for 48hrs before samples were collected for immunofluorescence analysis of proliferation markers.
- (**D**, **E**) Quantification of the proportion Ki67+ cells and the proportion of EdU+ cells in replicates 2 and 3 of the protocol detailed in (**C**).

See also the Materials & Methods section for further details.

Fig. S9. Stabilisation of β -catenin in quiescent NSCs promotes their reactivation similarly to $5\mu M$ CHIR99021 treatment.

- (A) Control and Catnb^{del(ex3)} NSCs were taken 48hrs after transduction of quiescent Catnb^{fl/wt(ex3)} NSCs with control and Cre adenovirus for immunofluorescence analysis.
- (**B**) Ki67, β-catenin and DAPI immunolabelling in control and Catnb^{del(ex3)} NSCs 48hrs after virus transduction. Scale bar, 100μm.
- (C) Quantification of the data in (B). The proportion of Ki67+ cells is increased in Catnb^{del(ex3)} NSCs (8.29 \pm 0.51%) compared with control (0.81 \pm 0.07%) indicating activation from quiescence upon stabilisation of β -catenin. n=2.
- (**D**) Quantification of the data shown in (**B**) of the intensity of β -catenin staining in quiescent control and Catnb^{del(ex3)} NSCs 48hrs after virus transduction. β -catenin intensity is increased in Catnb^{del(ex3)} NSCs compared with control indicating stabilisation of β -catenin. A.U.= Arbitrary Units. n=2.
- (E) The proportion of Tuj1+ cells is slightly increased in Catnb^{del(ex3)} NSCs ($2.48 \pm 0.56\%$) compared with control ($1.09 \pm 0.24\%$) which is similar to the increase in Tuj1+ cells seen with 5µm CHIR99021 treatment in quiescent NSCs (Fig. 6F). n=2.

Statistics: unpaired two-tailed Student's t-test (**C**, **D** and **E**). (ns, p>0.05. *, p<0.05. **, p<0.01). Error bars represent mean with SEM.

Table S1. Primary and secondary antibodies.

Target Molecule	Species	Procedure	Dilution	Supplier	Catalogue #
Actin	Rabbit	WB	1:1000	Sigma-Aldrich	A2066
β-catenin	Mouse	IF-in vivo	1:100	BD Biosciences	610154
		IF-in vitro	1:250		
		WB	1:2000		
β-galactosidase	Chicken	IF	1:1000	Aves Lab Inc.	BGL-1010
CyclinD1	Rabbit	IF	1:25	ThermoScientific	RM-9104
DCX	Goat	IF	1:50	Santa-Cruz	Sc-8066
					(Discontinued)
GFAP	Rat	IF	1:800	Invitrogen	13-0300
GFP	Chicken	IF	1:2000	Abcam	ab13970
Ki67	Mouse	IF	1:100	BD Biosciences	550609
Ki67	Rat	IF	1:200	Invitrogen	14-5698-82
Map2	Mouse	IF	1:200	Sigma	M4403
mCherry	Rabbit	IF	1:500	GeneTex	GTX128508
NeuN	Mouse	IF	1:800	Chemicon	MAB377
Prox1	Rabbit	IF	1:800	Merck	Ab5475
Sox2	Rat	IF	1:400	EBioscience	14-9811-82
Tbr2	Rabbit	IF	1:200	Abcam	ab183991
Tuj1	Rabbit	IF	1:400	Covance	PRB-435P
Tuj1	Mouse	IF	1:400	Covance	MMS-435P
Wnt7a	Rabbit	WB	1:500	Abcam	ab100792
Vimentin	Mouse	WB	1:2000	Sigma	V9131
Chicken IgG	Donkey	IF-488	1:500	Jackson	703-545-155
Mouse IgG	Donkey	IF-488	1:500	Jackson	715-546-151
Rat IgG	Donkey	IF-Cy3	1:500	Jackson	712-166-153
Rabbit IgG	Donkey	IF-Cy3	1:500	Jackson	711-166-152
Mouse IgG	Donkey	IF-Cy3	1:500	Jackson	715-166-151
Goat IgG	Donkey	IF-647	1:500	Jackson	705-605-147
Mouse IgG	Donkey	IF-647	1:500	Jackson	715-606-151
Rabbit IgG	Donkey	IF-647	1:500	Jackson	711-606-152
Rat IgG	Donkey	IF-647	1:500	Jackson	112-175-167
Mouse IgG	Rabbit	WB-HRP	1:1000	Dako	P0161
Rabbit IgG	Goat	WB-HRP	1:1000	Dako	P0448

Table S2. List of TaqMan probes from Applied Biosystems used for qPCR gene expression assays.

Gene	Assay ID	Catalogue Number
ActinB	Mm00607939_s1	4352933E
Ascl1	Mm03058063_m1	4331182
Axin2	Mm00443610_m1	4331182
GAPDH	Mm99999915_g1	4352932E
HopX	Mm00558630_m1	4331182
Id4	Mm00499701_m1	4331182
Nestin	Mm00450205_m1	4331182
Ngn2	Mm00437603_g1	4331182
Sox2	Mm00488369_s1	4331182
Tubb3 (Tuj1)	Mm00727586_s1	4331182
β-catenin exons 4-5	Mm01350386_g1	4351372