

Fig. S1. Experimental controls. A) Prophase I oocytes from WT mice were collected and in vitro matured with DMSO or cycloheximide (CHX, $20 \mu \mathrm{M}$) for 7 h . B) Relative pixel intensity of HPG from A. (Number of oocytes, DMSO: 22 and CHX is 22, Unpaired student's t-test, two tailed, ****p <0.001). C) Prophase I oocytes from WT, B cKO and B cKO/hetA were collected and stained with anti-HPG (Gray) and with DAPI (DNA, green). D) Relative pixel intensity of HPG from C. (Number of oocytes, WT: 25; B cKO: 22, B cKO het A: 25, One-Way ANOVA). E) Time required for completion of meiotic maturation via polar body extrusion (PBE) in WT, B cKO and B cKO hetA oocytes (Number of oocytes, WT: 25; B cKO: 32 and B cKO hetA: 20 One-way ANOVA, nonsignificant $p=0.1628$). These experiments were repeated 3 times with total of $3-4$ mice/ genotype.

Fig. S2: CPEB1 stability and phosphorylation dynamics and translation levels during mouse oocyte meiotic maturation. A-G) Prophase I oocytes from WT mice were collected and in vitro matured. Oocytes were collected at the indicated time points to obtain oocytes at major cell cycle phases where translation dynamics differ: prophase I (Oh), pro-Metaphase I (3h), Metaphase I (7h) and Metaphase II (16h). A) Prophase I oocytes from WT mice were collected and matured for the indicated time points prior to lysis and resolution by SDS-PAGE and membranes were probed with anti-CPEB1 (30 oocytes/lane). α-Tubulin served as a loading control. B) Relative CPEB1 expression from A. Values normalized to 0 h . This experiment was conducted 3 times with a total of 3-5 WT mice. C) Oocytes matured in vitro for the indicated amount of time were stained with anti-CPEB1 (gray) and DAPI (DNA, green) to confirm meiotic stage. Shown are representative confocal z-projections. D) Relative pixel intensity of CPEB1 from C. Values normalized to Oh. E) Oocytes matured in vitro for the indicated amount of time were labeled with HPG to detect translation and stained with anti-HPG (gray) and DAPI (DNA, green) to confirm meiotic stage. Shown are representative confocal z-projections. F) Relative pixel intensity of HPG from E. G) Overlay of CPEB1 and HPG levels, values from E and F. Scale bar is $10 \mu \mathrm{~m}$.

B

C

G

K

D

I

N

Fig. S3. CPE-containing candidate genes in WT and B cKO oocytes
A) Schematic representation of the 3' UTR present in the mouse Aurkc, Ccnb1, Hec1, Mos and Prc1. Polyadenylation sequences (PAS) are in yellow. Consensus CPEs are in blue. (B) Prophase I oocytes from WT and B cKO were lysed and resolved by SDSPAGE prior to western blotting to detect CCNB1 (25 oocytes/lane). C) Relative CCNB1 expression from B (Unpaired student's t-test, two tailed, n.s: not-significant). (D)

Prophase I oocytes from WT and B cKO were lysed and resolved by SDS-PAGE prior to western blotting to detect PRC1 (25 oocytes/lane). E) Relative PRC1 expression from D. Values normalized to α-tubulin (Unpaired student's t-test, two tailed, n.s: not-significant).
F) Prophase I oocytes from WT and B cKO were stained with anti-HEC1 (gray) and DAPI (DNA, green) to confirm meiotic stage. Shown are representative confocal z-projections. G) Relative pixel intensity of HEC1 from F (Number of oocytes; WT-24 and B cKO-22, (Unpaired student's t-test, two tailed,n.s: not-significant). H) Met II eggs from WT and B CKO were stained with anti-HEC1 (gray). Shown are representative confocal z-projections. I) Relative pixel intensity of HEC1 from F (Number of oocytes; WT-33 and B cKO-34, Unpaired student's t-test, two tailed **p
<0.01). J) Prophase I oocytes from WT and B cKO were stained with anti-MOS (gray) and DAPI (DNA, green) to confirm meiotic stage. Shown are representative confocal zprojections. K) Relative pixel intensity of MOS from J (Number of oocytes; WT-24 and B cKO-22, Unpaired student's t-test, two tailed, n.s: not-significant). M) Confocal images of Met I oocytes from WT and B cKO stained with anti-MOS (gray) and DAPI (green). N)

Relative intensity of MOS from M. Values normalized to WT (Number of oocytes: WT-32; B cKO-35).

Fig. S4. AURKB/C inhibition does not affect translation. A) IVM Met II eggs from WT, B cKO and B cKO hetA were stained with anti-pCDC25B (Ser353) (gray) and DAPI (DNA, green) to confirm meiotic stage. Shown are representative confocal z-projections. B) Relative pixel intensity of pCDC25B from A (Number of oocytes; WT-32, B cKO-36 and B cKO hetA -29, One-way ANOVA, n.s: not-significant, **p<0.01, ${ }^{* * * * p<0.0001) . ~}$ This experiment was repeated 3 times with total of 3 mice/genotype). C) Prophase I oocytes from WT mice were collected and matured to metaphase of meiosis I. Oocytes were matured in presence of DMSO, $5 \mu \mathrm{M}$ ZM447439 (ZM) or $1 \mu \mathrm{M}$ MLN8237 (MLN) and stained to detect HPG (gray) to assess translation DAPI (DNA, green) to confirm meiotic stage. Shown are representative confocal z-projections. D) Relative pixel intensity of HPG from C Number of oocytes: DMSO- 24; ZM-22; MLN- 21. One-way ANOVA, n.s. = not-significant, **** $p<0.0001$. E) WT oocytes were in vitro matured with or without MLN and 25 oocytes were collected per group after 0,3 and 7 hours of maturation. Oocytes were lysed and resolved by SDS-PAGE, then membranes were probed with antiCPEB1. F) Relative CPEB1 expression from E. Values normalized to a-tubulin. These experiments (C-E) were repeated 3 times with 2-3 mice per experimental replicate. Scale bar is $10 \mu \mathrm{~m}$.

Fig. S5. Loss of AURKC does not affect CPEB1 function. A) Prophase I oocytes from WT and AURKC KO oocytes mice were collected and matured to metaphase of meiosis I and stained with anti-CPEB1 (gray) and DAPI (DNA, green). Shown are representative confocal z-projections. B) Relative pixel intensity of CPEB1 from A. Values normalized to WT (Number of oocytes: WT- 29; C KO- 33, (Unpaired student's ttest, two tailed, n.s. $=$ not significant). Scale bar is $10 \mu \mathrm{~m}$. C) Prophase I oocytes from WT and AURKC KO mice were matured to Metaphase I and prior to western blotting to detect CPEB1 (30 oocytes/lane). α-Tubulin served as a loading control. D)

Quantification of CPEB1 expression after normalizing values from C to α-tubulin (Unpaired student's t -test, two tailed, n.s. = not significant). These experiments were repeated 3 times with 1 mouse per genotype for each experimental replicate.

Supplementary Materials and Methods

Sequence of Firefly-Luciferase-AurkC-3'UTR

ATGGAAGACGCCAAAAACATAAAGAAAGGCCCGGCGCCATTCTATCCGCTGGAAGATGGA ACCGCTGGAGAGCAACTGCATAAGGCTATGAAGAGATACGCCCTGGTTCCTGGAACAATT GCTTTTACAGATGCACATATCGAGGTGGACATCACTTACGCTGAGTACTTCGAAATGTCCG TTCGGTTGGCAGAAGCTATGAAACGATATGGGCTGAATACAAATCACAGAATCGTCGTATG CAGTGAAAACTCTCTTCAATTCTTTATGCCGGTGTTGGGCGCGTTATTTATCGGAGTTGCA GTTGCGCCCGCGAACGACATTTATAATGAACGTGAATTGCTCAACAGTATGGGCATTTCGC AGCCTACCGTGGTGTTCGTTTCCAAAAAGGGGTTGCAAAAAATTTTGAACGTGCAAAAAAA GCTCCCAATCATCCAAAAAATTATTATCATGGATTCTAAAACGGATTACCAGGGATTTCAGT CGATGTACACGTTCGTCACATCTCATCTACCTCCCGGTTTTAATGAATACGATTTTGTGCCA GAGTCCTTCGATAGGGACAAGACAATTGCACTGATCATGAACTCCTCTGGATCTACTGGTC TGCCTAAAGGTGTCGCTCTGCCTCATAGAACTGCCTGCGTGAGATTCTCGCATGCCAGAG ATCCTATTTTTGGCAATCAAATCATTCCGGATACTGCGATTTTAAGTGTTGTTCCATTCCATC ACGGTTTTGGAATGTTTACTACACTCGGATATTTGATATGTGGATTTCGAGTCGTCTTAATG TATAGATTTGAAGAAGAGCTGTTTCTGAGGAGCCTTCAGGATTACAAGATTCAAAGTGCGC TGCTGGTGCCAACCCTATTCTCCTTCTTCGCCAAAAGCACTCTGATTGACAAATACGATTTA TCTAATTTACACGAAATTGCTTCTGGTGGCGCTCCCCTCTCTAAGGAAGTCGGGGAAGCGG TTGCCAAGAGGTTCCATCTGCCAGGTATCAGGCAAGGATATGGGCTCACTGAGACTACATC AGCTATTCTGATTACACCCGAGGGGGATGATAAACCGGGCGCGGTCGGTAAAGTTGTTCC ATTTTTTGAAGCGAAGGTTGTGGATCTGGATACCGGGAAAACGCTGGGCGTTAATCAAAGA GGCGAACTGTGTGTGAGAGGTCCTATGATTATGTCCGGTTATGTAAACAATCCGGAAGCGA CCAACGCCTTGATTGACAAGGATGGATGGCTACATTCTGGAGACATAGCTTACTGGGACGA AGACGAACACTTCTTCATCGTTGACCGCCTGAAGTCTCTGATTAAGTACAAAGGCTATCAG GTGGCTCCCGCTGAATTGGAATCCATCTTGCTCCAACACCCCAACATCTTCGACGCAGGTG TCGCAGGTCTTCCCGACGATGACGCCGGTGAACTTCCCGCCGCCGTTGTTGTTTTGGAGC ACGGAAAGACGATGACGGAAAAAGAGATCGTGGATTACGTCGCCAGTCAAGTAACAACCG CGAAAAAGTTGCGCGGAGGAGTTGTGTTTGTGGACGAAGTACCGAAAGGTCTTACCGGAA AACTCGACGCAAGAAAAATCAGAGAGATCCTCATAAAGGCCAAGAAGGGCGGAAAGATCG CCGTGTAATTCTAGATTCAGGGGTCTTCCTGAGCCCTGTCCATCTCTATCCCTATGTATTTC TTCAGGAAGGTCTCCAGGCTCTGTTTGTTAGTGCATGTGGTTCGCTTGTTTTCTCTTTTATG AAGTGATGTTAATTAAAACTGATTATTTTAGCATC

Sequence of Firefly-Luciferase-AurkC-3'UTR (Mutated):

ATGGAAGACGCCAAAAACATAAAGAAAGGCCCGGCGCCATTCTATCCGCTGGAAGATGGA ACCGCTGGAGAGCAACTGCATAAGGCTATGAAGAGATACGCCCTGGTTCCTGGAACAATT GCTTTTACAGATGCACATATCGAGGTGGACATCACTTACGCTGAGTACTTCGAAATGTCCG TTCGGTTGGCAGAAGCTATGAAACGATATGGGCTGAATACAAATCACAGAATCGTCGTATG CAGTGAAAACTCTCTTCAATTCTTTATGCCGGTGTTGGGCGCGTTATTTATCGGAGTTGCA GTTGCGCCCGCGAACGACATTTATAATGAACGTGAATTGCTCAACAGTATGGGCATTTCGC AGCCTACCGTGGTGTTCGTTTCCAAAAAGGGGTTGCAAAAAATTTTGAACGTGCAAAAAAA GCTCCCAATCATCCAAAAAATTATTATCATGGATTCTAAAACGGATTACCAGGGATTTCAGT CGATGTACACGTTCGTCACATCTCATCTACCTCCCGGTTTTAATGAATACGATTTTGTGCCA GAGTCCTTCGATAGGGACAAGACAATTGCACTGATCATGAACTCCTCTGGATCTACTGGTC TGCCTAAAGGTGTCGCTCTGCCTCATAGAACTGCCTGCGTGAGATTCTCGCATGCCAGAG ATCCTATTTTTGGCAATCAAATCATTCCGGATACTGCGATTTTAAGTGTTGTTCCATTCCATC ACGGTTTTGGAATGTTTACTACACTCGGATATTTGATATGTGGATTTCGAGTCGTCTTAATG TATAGATTTGAAGAAGAGCTGTTTCTGAGGAGCCTTCAGGATTACAAGATTCAAAGTGCGC TGCTGGTGCCAACCCTATTCTCCTTCTTCGCCAAAAGCACTCTGATTGACAAATACGATTTA TCTAATTTACACGAAATTGCTTCTGGTGGCGCTCCCCTCTCTAAGGAAGTCGGGGAAGCGG TTGCCAAGAGGTTCCATCTGCCAGGTATCAGGCAAGGATATGGGCTCACTGAGACTACATC AGCTATTCTGATTACACCCGAGGGGGATGATAAACCGGGCGCGGTCGGTAAAGTTGTTCC ATTTTTTGAAGCGAAGGTTGTGGATCTGGATACCGGGAAAACGCTGGGCGTTAATCAAAGA GGCGAACTGTGTGTGAGAGGTCCTATGATTATGTCCGGTTATGTAAACAATCCGGAAGCGA CCAACGCCTTGATTGACAAGGATGGATGGCTACATTCTGGAGACATAGCTTACTGGGACGA AGACGAACACTTCTTCATCGTTGACCGCCTGAAGTCTCTGATTAAGTACAAAGGCTATCAG GTGGCTCCCGCTGAATTGGAATCCATCTTGCTCCAACACCCCAACATCTTCGACGCAGGTG TCGCAGGTCTTCCCGACGATGACGCCGGTGAACTTCCCGCCGCCGTTGTTGTTTTGGAGC ACGGAAAGACGATGACGGAAAAAGAGATCGTGGATTACGTCGCCAGTCAAGTAACAACCG CGAAAAAGTTGCGCGGAGGAGTTGTGTTTGTGGACGAAGTACCGAAAGGTCTTACCGGAA AACTCGACGCAAGAAAAATCAGAGAGATCCTCATAAAGGCCAAGAAGGGCGGAAAGATCG CCGTGTAATTCTAGATTCAGGGGTCTTCCTGAGCCCTGTCCATCTCTATCCCTATGTATTTC TTCAGGAAGGTCTCCAGGCTCTGTTTGTTAGTGCATGTGGTTCGCTTGTTTTCTCTTGGAT GAAGTGATGTTAATTAAAACTGATTATTTTAGCATC

Sequence of Firefly-Luciferase-Ccnb1-3'UTR

ATGGAAGACGCCAAAAACATAAAGAAAGGCCCGGCGCCATTCTATCCGCTGGAAGATGGA ACCGCTGGAGAGCAACTGCATAAGGCTATGAAGAGATACGCCCTGGTTCCTGGAACAATT GCTTTTACAGATGCACATATCGAGGTGGACATCACTTACGCTGAGTACTTCGAAATGTCCG TTCGGTTGGCAGAAGCTATGAAACGATATGGGCTGAATACAAATCACAGAATCGTCGTATG CAGTGAAAACTCTCTTCAATTCTTTATGCCGGTGTTGGGCGCGTTATTTATCGGAGTTGCA GTTGCGCCCGCGAACGACATTTATAATGAACGTGAATTGCTCAACAGTATGGGCATTTCGC AGCCTACCGTGGTGTTCGTTTCCAAAAAGGGGTTGCAAAAAATTTTGAACGTGCAAAAAAA GCTCCCAATCATCCAAAAAATTATTATCATGGATTCTAAAACGGATTACCAGGGATTTCAGT CGATGTACACGTTCGTCACATCTCATCTACCTCCCGGTTTTAATGAATACGATTTTGTGCCA GAGTCCTTCGATAGGGACAAGACAATTGCACTGATCATGAACTCCTCTGGATCTACTGGTC TGCCTAAAGGTGTCGCTCTGCCTCATAGAACTGCCTGCGTGAGATTCTCGCATGCCAGAG ATCCTATTTTTGGCAATCAAATCATTCCGGATACTGCGATTTTAAGTGTTGTTCCATTCCATC ACGGTTTTGGAATGTTTACTACACTCGGATATTTGATATGTGGATTTCGAGTCGTCTTAATG TATAGATTTGAAGAAGAGCTGTTTCTGAGGAGCCTTCAGGATTACAAGATTCAAAGTGCGC TGCTGGTGCCAACCCTATTCTCCTTCTTCGCCAAAAGCACTCTGATTGACAAATACGATTTA TCTAATTTACACGAAATTGCTTCTGGTGGCGCTCCCCTCTCTAAGGAAGTCGGGGAAGCGG TTGCCAAGAGGTTCCATCTGCCAGGTATCAGGCAAGGATATGGGCTCACTGAGACTACATC AGCTATTCTGATTACACCCGAGGGGGATGATAAACCGGGCGCGGTCGGTAAAGTTGTTCC ATTTTTTGAAGCGAAGGTTGTGGATCTGGATACCGGGAAAACGCTGGGCGTTAATCAAAGA GGCGAACTGTGTGTGAGAGGTCCTATGATTATGTCCGGTTATGTAAACAATCCGGAAGCGA CCAACGCCTTGATTGACAAGGATGGATGGCTACATTCTGGAGACATAGCTTACTGGGACGA AGACGAACACTTCTTCATCGTTGACCGCCTGAAGTCTCTGATTAAGTACAAAGGCTATCAG GTGGCTCCCGCTGAATTGGAATCCATCTTGCTCCAACACCCCAACATCTTCGACGCAGGTG TCGCAGGTCTTCCCGACGATGACGCCGGTGAACTTCCCGCCGCCGTTGTTGTTTTGGAGC ACGGAAAGACGATGACGGAAAAAGAGATCGTGGATTACGTCGCCAGTCAAGTAACAACCG CGAAAAAGTTGCGCGGAGGAGTTGTGTTTGTGGACGAAGTACCGAAAGGTCTTACCGGAA AACTCGACGCAAGAAAAATCAGAGAGATCCTCATAAAGGCCAAGAAGGGCGGAAAGATCG CCGTGTCTCCAATAGACTGCTACATCTGCAGATGCAGTTGGCACCATGTGCCGCCTGTACA TAGGATACCTACCGTGTTTACTTGCTCTTCAATAAAGGTTGTGACTTCTCATTTTACATAGCT TAACTCATTTGAATGTTGTTGCTTCTGAGTTTAGGCTAACGGAAGTTGTCGAATTTAGGAGT ATATTAAAAACTGCATCTAGTTTTAACAGTGGATCCAACTAATGTATATATCTGTAGCCTATA TGTCTATATACATCCTTCACTGTGTGTCCTTATATCATCATGTCTTCTGCCTCACTCTAGTTT AAACTCTAAATCTACCAGCTAGTCCTTTGTTCCATTTTCCAGTGGTTGCCACCTTTAACCAC TGTCTCTTGGTTTGTCAACTTTCAGATCTGAAACCAAGTATCTTTTTTTATGTAATTATTTATT TGTTCTTAATTGGAAAATAGGATGTTCAAAATTAAAGGTGTGTTTTAAAAAGAATTTGCCCCC AAGTCTCACTATCAACAGATAAGGGTGTATTCTTGTATATCCTGTATAGATATAATCATGCAT ATACTCCCAAGGAGATATTTTTATATGGGTTCATTTTATCAACAGTATTCCTATCAGCATTCC TTTCAATGCCTATATTGCATTTCCTAGTGTGAACAAACTGTGTGTAACATAGTCATTCCCTC GGTGGGATTCAAGTGCATTCTCTCAGTGCCCTCCACAGTGTTCTTAAATGATGTTTAATGTC TTGCTTGGCTTCATTCATAGTAGCTCTTCCAGGGGTGTGCTTTGAATTCTGACAGCCAGAT GGGTGTGGCTGCCACCATACCAAGGCGCCACTCCTGTCTTGTAATGCCACCTGGAAAAGA ATCCTGTCTCATTTGCTGITTTAATTTATACATCTGATATCAAGTTGAATAAAATTTATTGGT GGAAAGCTTT

Sequence of Firefly-Luciferase-Ccnb1-3'UTR (Mutated)

ATGGAAGACGCCAAAAACATAAAGAAAGGCCCGGCGCCATTCTATCCGCTGGAAGATGGA ACCGCTGGAGAGCAACTGCATAAGGCTATGAAGAGATACGCCCTGGTTCCTGGAACAATT GCTTTTACAGATGCACATATCGAGGTGGACATCACTTACGCTGAGTACTTCGAAATGTCCG TTCGGTTGGCAGAAGCTATGAAACGATATGGGCTGAATACAAATCACAGAATCGTCGTATG CAGTGAAAACTCTCTTCAATTCTTTATGCCGGTGTTGGGCGCGTTATTTATCGGAGTTGCA GTTGCGCCCGCGAACGACATTTATAATGAACGTGAATTGCTCAACAGTATGGGCATTTCGC AGCCTACCGTGGTGTTCGTTTCCAAAAAGGGGTTGCAAAAAATTTTGAACGTGCAAAAAAA GCTCCCAATCATCCAAAAAATTATTATCATGGATTCTAAAACGGATTACCAGGGATTTCAGT CGATGTACACGTTCGTCACATCTCATCTACCTCCCGGTTTTAATGAATACGATTTTGTGCCA GAGTCCTTCGATAGGGACAAGACAATTGCACTGATCATGAACTCCTCTGGATCTACTGGTC TGCCTAAAGGTGTCGCTCTGCCTCATAGAACTGCCTGCGTGAGATTCTCGCATGCCAGAG ATCCTATTTTTGGCAATCAAATCATTCCGGATACTGCGATTTTAAGTGTTGTTCCATTCCATC ACGGTTTTGGAATGTTTACTACACTCGGATATTTGATATGTGGATTTCGAGTCGTCTTAATG TATAGATTTGAAGAAGAGCTGTTTCTGAGGAGCCTTCAGGATTACAAGATTCAAAGTGCGC TGCTGGTGCCAACCCTATTCTCCTTCTTCGCCAAAAGCACTCTGATTGACAAATACGATTTA TCTAATTTACACGAAATTGCTTCTGGTGGCGCTCCCCTCTCTAAGGAAGTCGGGGAAGCGG TTGCCAAGAGGTTCCATCTGCCAGGTATCAGGCAAGGATATGGGCTCACTGAGACTACATC AGCTATTCTGATTACACCCGAGGGGGATGATAAACCGGGCGCGGTCGGTAAAGTTGTTCC ATTTTTTGAAGCGAAGGTTGTGGATCTGGATACCGGGAAAACGCTGGGCGTTAATCAAAGA GGCGAACTGTGTGTGAGAGGTCCTATGATTATGTCCGGTTATGTAAACAATCCGGAAGCGA CCAACGCCTTGATTGACAAGGATGGATGGCTACATTCTGGAGACATAGCTTACTGGGACGA AGACGAACACTTCTTCATCGTTGACCGCCTGAAGTCTCTGATTAAGTACAAAGGCTATCAG GTGGCTCCCGCTGAATTGGAATCCATCTTGCTCCAACACCCCAACATCTTCGACGCAGGTG TCGCAGGTCTTCCCGACGATGACGCCGGTGAACTTCCCGCCGCCGTTGTTGTTTTGGAGC ACGGAAAGACGATGACGGAAAAAGAGATCGTGGATTACGTCGCCAGTCAAGTAACAACCG CGAAAAAGTTGCGCGGAGGAGTTGTGTTTGTGGACGAAGTACCGAAAGGTCTTACCGGAA AACTCGACGCAAGAAAAATCAGAGAGATCCTCATAAAGGCCAAGAAGGGCGGAAAGATCG CCGTGTCTCCAATAGACTGCTACATCTGCAGATGCAGTTGGCACCATGTGCCGCCTGTACA TAGGATACCTACCGTGTTTACTTGCTCTTCAATAAAGGTTGTGACTTCTCATTTTACATAGCT TAACTCATTTGAATGTTGTTGCTTCTGAGTTTAGGCTAACGGAAGTTGTCGAATTTAGGAGT ATATTAAAAACTGCATCTAGTTTTAACAGTGGATCCAACTAATGTATATATCTGTAGCCTATA TGTCTATATACATCCTTCACTGTGTGTCCTTATATCATCATGTCTTCTGCCTCACTCTAGTTT AAACTCTAAATCTACCAGCTAGTCCTTTGTTCCATTTTCCAGTGGTTGCCACCTTTAACCAC TGTCTCTTGGTTTGTCAACTTTCAGATCTGAAACCAAGTATCTTTTCCGACGTAATTATTTAT TTGTTCTTAATTGGAAAATAGGATGTTCAAAATTAAAGGTGTGTTTTAAAAAGAATTTGCCCC CAAGTCTCACTATCAACAGATAAGGGTGTATTCTTGTATATCCTGTATAGATATAATCATGC ATATACTCCCAAGGAGATATTCCGACATGGGTTCATCCGACCAACAGTATTCCTATCAGCA TTCCTTTCAATGCCTATATTGCATTTCCTAGTGTGAACAAACTGTGTGTAACATAGTCATTCC CTCGGTGGGATTCAAGTGCATTCTCTCAGTGCCCTCCACAGTGTTCTTAAATGATGTTTAAT GTCTTGCTTGGCTTCATTCATAGTAGCTCTTCCAGGGGTGTGCTTTGAATTCTGACAGCCA GATGGGTGTGGCTGCCACCATACCAAGGCGCCACTCCTGTCTTGTAATGCCACCTGGAAA AGAATCCTGTCTCATTTGCTGCGACTCCTTATACATCTGATATCAAGTTGAATAAAATTTATT GGTGGAAAGCTTT

